Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions
Perennial ryegrass (Lolium perenne) is the predominant forage crop in the equatorial highland zones of Colombia due to its high nutritional value and versatility to produce both milk and meat. This study aimed to determine the relationship between the relative depletion of usable soil water and the...
Main Authors: | , , |
---|---|
Format: | article |
Language: | Inglés |
Published: |
Multidisciplinary Digital Publishing Institute
2023
|
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/14/11/1696 http://hdl.handle.net/20.500.12324/38687 https://doi.org/10.3390/w14111696 |
id |
RepoAGROSAVIA38687 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Arreglo y sistemas de cultivo - F08 Forrajes Materia seca Producción Agotamiento del agua Transversal http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_331318 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_25334 |
spellingShingle |
Arreglo y sistemas de cultivo - F08 Forrajes Materia seca Producción Agotamiento del agua Transversal http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_331318 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_25334 Teran Chaves, Cesar Augusto García Prats, Alberto Polo Murcia, Sonia Mercedes Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
description |
Perennial ryegrass (Lolium perenne) is the predominant forage crop in the equatorial highland zones of Colombia due to its high nutritional value and versatility to produce both milk and meat. This study aimed to determine the relationship between the relative depletion of usable soil water and the Ks values of canopy expansion and closure stomatal of perennial ryegrass, as well as to identify the threshold values of water stress. The experiment was carried out in pots under a controlled environment condition. These pots were arranged in a completely randomized manner. The experiment consisted of five treatments—including control treatment—of water deficits in the soil that progressively increased the depletion level as the crop cycle developed. This generated a wide range of conditions in the growth stages. For each treatment, four repetitions were performed Biomass production was significantly affected by water stress. The results show that the upper and lower thresholds of Ks were 0.28 and 1.3 of the depletion level (p) of the total available water (TAW) in the soil for the expansion of the canopy (CE), and 0.25 and 1.1 p of the TAW for stomatal closure (gs). Quadratic functions were fitted for both the CE (R2 = 0.72) and CS (R2 = 0.73); moreover, the Ks function of FAO-AquaCrop with positive shape factor (sf) was as follows: sf = 11, RMSE 0.22 for CE, and sf = 4.3, RMSE 0.19 for gs. Our results indicate that ryegrass is moderately sensitive to water stress. The differences found between the Ks function of FAO and the experimental data call for the need to use modeling with parameters adapted for each case. |
format |
article |
author |
Teran Chaves, Cesar Augusto García Prats, Alberto Polo Murcia, Sonia Mercedes |
author_facet |
Teran Chaves, Cesar Augusto García Prats, Alberto Polo Murcia, Sonia Mercedes |
author_sort |
Teran Chaves, Cesar Augusto |
title |
Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
title_short |
Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
title_full |
Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
title_fullStr |
Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
title_full_unstemmed |
Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions |
title_sort |
water stress thresholds and evaluation of coefficient ks for perennial ryegrass in tropical conditions |
publisher |
Multidisciplinary Digital Publishing Institute |
publishDate |
2023 |
url |
https://www.mdpi.com/2073-4441/14/11/1696 http://hdl.handle.net/20.500.12324/38687 https://doi.org/10.3390/w14111696 |
work_keys_str_mv |
AT teranchavescesaraugusto waterstressthresholdsandevaluationofcoefficientksforperennialryegrassintropicalconditions AT garciapratsalberto waterstressthresholdsandevaluationofcoefficientksforperennialryegrassintropicalconditions AT polomurciasoniamercedes waterstressthresholdsandevaluationofcoefficientksforperennialryegrassintropicalconditions |
_version_ |
1808106363435352064 |
spelling |
RepoAGROSAVIA386872023-12-14T03:00:57Z Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions Teran Chaves, Cesar Augusto García Prats, Alberto Polo Murcia, Sonia Mercedes Arreglo y sistemas de cultivo - F08 Forrajes Materia seca Producción Agotamiento del agua Transversal http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_331318 http://aims.fao.org/aos/agrovoc/c_6200 http://aims.fao.org/aos/agrovoc/c_25334 Perennial ryegrass (Lolium perenne) is the predominant forage crop in the equatorial highland zones of Colombia due to its high nutritional value and versatility to produce both milk and meat. This study aimed to determine the relationship between the relative depletion of usable soil water and the Ks values of canopy expansion and closure stomatal of perennial ryegrass, as well as to identify the threshold values of water stress. The experiment was carried out in pots under a controlled environment condition. These pots were arranged in a completely randomized manner. The experiment consisted of five treatments—including control treatment—of water deficits in the soil that progressively increased the depletion level as the crop cycle developed. This generated a wide range of conditions in the growth stages. For each treatment, four repetitions were performed Biomass production was significantly affected by water stress. The results show that the upper and lower thresholds of Ks were 0.28 and 1.3 of the depletion level (p) of the total available water (TAW) in the soil for the expansion of the canopy (CE), and 0.25 and 1.1 p of the TAW for stomatal closure (gs). Quadratic functions were fitted for both the CE (R2 = 0.72) and CS (R2 = 0.73); moreover, the Ks function of FAO-AquaCrop with positive shape factor (sf) was as follows: sf = 11, RMSE 0.22 for CE, and sf = 4.3, RMSE 0.19 for gs. Our results indicate that ryegrass is moderately sensitive to water stress. The differences found between the Ks function of FAO and the experimental data call for the need to use modeling with parameters adapted for each case. 2023-12-13T19:59:22Z 2023-12-13T19:59:22Z 2022-05-25 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2073-4441/14/11/1696 2073-4441 http://hdl.handle.net/20.500.12324/38687 https://doi.org/10.3390/w14111696 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Water 14 11 1 16 Wang, Y.; Dai, Y.; Tao, X.; Wang, J.Z.; Cheng, H.Y.; Yang, H.; Ma, X.R. Heat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis. Front. Plant Sci. 2016, 6, 1226. [CrossRef] [PubMed] Förster, L.; Grant, J.; Michel, T.; Ng, C.; Barth, S. Growth under cold conditions in a wide perennial ryegrass panel is under tight physiological control. Peer J. 2018, 6, e5520. [CrossRef] [PubMed] Turner, L.R.; Holloway-Phillips, M.M.; Rawnsley, R.P.; Donaghy, D.J.; Pembleton, K.G. The morphological and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.) and tall fescue (Festuca arundinaceaSchreb.; syn. Schedonorus phoenixScop.) to variable water availability. Grass Forage Sci. 2012, 67, 507–518. [CrossRef] Fessehazion, M.K.; Annandale, J.G.; Everson, C.S.; Stirzaker, R.J.; van der Laan, M.; Truter, W.F.; Abraha, A.B. Performance of simple irrigation scheduling calendars based on average weather data for annual ryegrass. Afr. J. Range Forage Sci. 2014, 31, 221–228. [CrossRef] Sheikh-Mohammadi, M.H.; Etemadi, N.; Arab, M.M.; Aalifar, M.; Arab, M.; Pessarakli, M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiol. Biochem. 2017, 111, 129–143. [CrossRef] [PubMed] Kemesyte, V.; Statkeviciute, G.; Brazauskas, G. Perennial Ryegrass Yield Performance under Abiotic Stress. Crop Sci. 2017, 57, 1935–1940. [CrossRef] Yates, S.; Jaškun¯ e, K.; Liebisch, F.; Nagelmüller, S.; Kirchgessner, N.; Kölliker, R.; Walter, A.; Brazauskas, G.; Studer, B. Phenotyping ˙ a Dynamic Trait: Leaf Growth of Perennial Ryegrass Under Water Limiting Conditions. Front. Plant Sci. 2019, 10, 344. [CrossRef] Tardieu, F. Plant response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit. Front. Physiol. 2013, 4, 17. [CrossRef] Grace, J.; Levitt, J. Responses of Plants to Environmental Stresses. Volume II. Water, Radiation, Salt, and other Stresses. J. Ecol. 1982, 70, 696. [CrossRef] Dangwal, N.; Patel, N.; Kumari, M.; Saha, S. Monitoring of water stress in wheat using multispectral indices derived from Landsat-TM. Geocarto Int. 2015, 31, 682–693. [CrossRef] Molina, O.; Bernhofer, C. Assessment of Regional and Historical Climate Records for a Water Budget Approach in Eastern Colombia. Water 2019, 12, 42. [CrossRef] Terán-Chaves, C.A.; Duarte-Carvajalino, J.M.; Polo-Murcia, S. Quality control and filling of daily temperature and precipitation time series in Colombia. Meteorol. Z. 2021, 30, 489–501. [CrossRef] Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [CrossRef] Neal, J.; Fulkerson, W.; Hacker, R. Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation. Agric. Water Manag. 2011, 98, 759–774. [CrossRef] Hatier, J.H.B.; Faville, M.J.; Hickey, M.J.; Koolaard, J.P.; Schmidt, J.; Carey, B.L.; Jones, C.S. Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (Lolium perenne L.). J. Exp. Bot. 2014, 65, 5823–5834. [CrossRef] Hofer, D.; Suter, M.; Buchmann, N.; Lüscher, A. Severe water deficit restricts biomass production of Lolium perenne L. and Trifolium repens L. and causes foliar nitrogen but not carbohydrate limitation. Plant Soil 2017, 421, 367–380. [CrossRef] Bothe, A.; Westermeier, P.; Wosnitza, A.; Willner, E.; Schum, A.; Dehmer, K.J.; Hartmann, S. Drought tolerance in perennial ryegrass (Lolium perenne L.) as assessed by two contrasting phenotyping systems. J. Agron. Crop Sci. 2018, 204, 375–389. [CrossRef] Perera, R.S.; Cullen, B.R.; Eckard, R.J. Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses. Plants 2019, 8, 227. [CrossRef] Dalling, J.W.; Winter, K.; Andersen, K.M.; Turner, B.L. Artefacts of the pot environment on soil nutrient availability: Implications for the interpretation of ecological studies. Plant Ecol. 2013, 214, 329–338. [CrossRef] Borrajo, C.I.; Sánchez-Moreiras, A.M.; Reigosa, M.J. Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS ONE 2018, 13, e0209281. [CrossRef] Hohmann, M.; Stahl, A.; Rudloff, J.; Wittkop, B.; Snowdon, R.J. Not a load of rubbish: Simulated field trials in large-scale containers. Plant Cell Environ. 2016, 39, 2064–2073. [CrossRef] [PubMed] Passioura, J.B. Viewpoint: The perils of pot experiments. Funct. Plant Biol. 2006, 33, 1075. [CrossRef] [PubMed] Terán-Chaves, C.A. Determinación de la huella hídrica y modelación de la producción de biomasa de cultivos forrajeros a partir del agua en la Sabana de Bogotá (Colombia). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2015 Ferrari, H.; Ferrari, C.; Ferrari, F. CobCal v 2.1. Instituto Nacional de Tecnología Agropecuaria.INTA. Entre Ríos, Argentina. 2006. Available online: https://www.cobcal.com.ar (accessed on 3 April 2013). Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [CrossRef] Ferreira, D.P.; Sousa, D.P.; Nunes, H.G.G.C.; Pinto, J.V.N.; Farias, V.D.S.; Costa, D.L.P.; Moura, V.B.; Teixeira, E.; Sousa, A.M.L.; Pinheiro, H.A.; et al. Cowpea Ecophysiological Responses to Accumulated Water Deficiency during the Reproductive Phase in Northeastern Pará, Brazil. Horticulturae 2021, 7, 116. [CrossRef] Jurczyk, B.; Pociecha, E.; Janowiak, F.; Kabała, D.; Rapacz, M. Variation in waterlogging-triggered stomatal behavior contributes to changes in the cold acclimation process in prehardened Lolium perenne and Festuca pratensis. J. Physiol. Biochem. 2016, 109, 280–292. [CrossRef] Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294. [CrossRef] Pornaro, C.; Serena, M.; Macolino, S.; Leinauer, B. Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy 2020, 10, 1810. [CrossRef] Nie, Z.; Norton, M.R. Stress Tolerance and Persistence of Perennial Grasses: The Role of the Summer Dormancy Trait in Temperate Australia. Crop Sci. 2009, 49, 2405–2411. [CrossRef] ussain, S. Drought Tolerance Mechanisms in “Mediterranean” Perennial Ryegrass (Lolium perenne L.) and Potential for Intro gression of “Mediterranean” Germplasm into New Zealand Commercial Cultivars. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2013 He, L.; Hatier, J.H.; Matthew, C. Drought tolerance of two perennial ryegrass cultivars with and without AR37 endophyte. N. Z. J. Agric. Res. 2017, 60, 173–188. [CrossRef] Cyriac, D.; Hofmann, R.W.; Stewart, A.; Sathish, P.; Winefield, C.S.; Moot, D.J. Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE 2018, 13, e0194977. [CrossRef] Abraha, A.B.; Truter, W.F.; Annandale, J.G.; Fessehazion, M.K. Forage yield and quality response of annual ryegrass (Lolium multiflorum) to different water and nitrogen levels. Afr. J. Range Forage Sci. 2015, 32, 125–131. [CrossRef] Ninanya, J.; Ramírez, D.A.; Rinza, J.; Silva-Díaz, C.; Cervantes, M.; García, J.; Quiroz, R. Canopy Temperature as a Key Physiological Trait to Improve Yield Prediction under Water Restrictions in Potato. Agronomy 2021, 11, 1436. [CrossRef] Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop yield response to water. In FAO Irrigation and Drainage Paper 66; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; p. 503 Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56—Crop Evapotranspiration; FAO: Rome, Italy, 1998. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop, version 6.0–6.1; Chapter 1: FAO Crop-Water Productivity Model to Simulate Yield Response to Water; FAO: Rome, Italy, 2018. Bradford, K.J.; Hsiao, T.C. Physiological Responses to Moderate Water Stress. In Physiological Plant Ecology II. Encyclopedia of Plant Physiology (New Series); Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 12. Available online: https://citations.springernature.com/item?doi=10.1007/978-3-642-68150-9_10 (accessed on 15 April 2022) Mahdavi, S.; Kafi, M.; Fallahi, E.; Shokrpour, M.; Tabrizi, L. Drought and biostimulant impacts on mineral nutrients, ambient and reflected light-based chlorophyll index, and performance of perennial ryegrass. J. Plant Nutr. 2017, 40, 2248–2258. [CrossRef] Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Multidisciplinary Digital Publishing Institute Suiza Water; Vol. 14, Núm. 11 (2022): Water;p. 1 -16. |