Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis

The relationship between reflectance and chlorophyll (Chl) and nitrogen (N) contents in maize leaves was analyzed to identify useful spectral indices for diagnosing the nutritional status of crops in terms of N. An experiment was carried out in random blocks with five treatments of nitrogen fertiliz...

Full description

Bibliographic Details
Main Authors: Ramos García, Carlos Arturo, Martínez Martínez, Luis Joel, Bernal Riobo, Jaime Humberto
Format: article
Language:Español
Published: Universidad Pedagógica y Tecnológica de Colombia - UPTC 2023
Subjects:
Online Access:https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13398
http://hdl.handle.net/20.500.12324/38685
https://doi.org/10.19053/rcch.2022v16i1.13398
id RepoAGROSAVIA38685
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Español
topic Cultivo - F01
Reflectancia
Maíz
Cultivo
Nutrición de las plantas
Transitorios
http://aims.fao.org/aos/agrovoc/c_28538
http://aims.fao.org/aos/agrovoc/c_12332
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_16379
spellingShingle Cultivo - F01
Reflectancia
Maíz
Cultivo
Nutrición de las plantas
Transitorios
http://aims.fao.org/aos/agrovoc/c_28538
http://aims.fao.org/aos/agrovoc/c_12332
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_16379
Ramos García, Carlos Arturo
Martínez Martínez, Luis Joel
Bernal Riobo, Jaime Humberto
Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
description The relationship between reflectance and chlorophyll (Chl) and nitrogen (N) contents in maize leaves was analyzed to identify useful spectral indices for diagnosing the nutritional status of crops in terms of N. An experiment was carried out in random blocks with five treatments of nitrogen fertilizer (0, 50, 100, 150, 200 kg ha-1) and four repetitions and the foliar spectral responses were measured with a FieldSpec 4 spectroradiometer in three phenological stages. Several spectral indices and values of red edge position (REP) were calculated using various methods. Red-edge position linear interpolation (REP-L), Red-edge position linear extrapolation (REP-LE), REP-Inverted Gaussian fitting technique (REP-IG), REP-Polynomial fitting technique (REP-P) and NDVI had the best relationship with chlorophyll and nitrogen contents. The first derivative of reflectance, between 560 and 760 nm, transformed by the normal state variable (SNV) also had highly significant correlation coefficients with the N, Chl, and yield. Additionally, the corn yield showed highly significant correlations with the N and Chl contents. From the point of view of the diagnosis of the nutritional status of corn, the spectral indices and REP values were suitable for establishing the nutritional status of corn in relation to N in the phenological stages V8 and R1.
format article
author Ramos García, Carlos Arturo
Martínez Martínez, Luis Joel
Bernal Riobo, Jaime Humberto
author_facet Ramos García, Carlos Arturo
Martínez Martínez, Luis Joel
Bernal Riobo, Jaime Humberto
author_sort Ramos García, Carlos Arturo
title Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
title_short Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
title_full Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
title_fullStr Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
title_full_unstemmed Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis
title_sort estimating chlorophyll and nitrogen contents in maize (zea mays l.) leaves with spectroscopic analysis
publisher Universidad Pedagógica y Tecnológica de Colombia - UPTC
publishDate 2023
url https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13398
http://hdl.handle.net/20.500.12324/38685
https://doi.org/10.19053/rcch.2022v16i1.13398
work_keys_str_mv AT ramosgarciacarlosarturo estimatingchlorophyllandnitrogencontentsinmaizezeamayslleaveswithspectroscopicanalysis
AT martinezmartinezluisjoel estimatingchlorophyllandnitrogencontentsinmaizezeamayslleaveswithspectroscopicanalysis
AT bernalriobojaimehumberto estimatingchlorophyllandnitrogencontentsinmaizezeamayslleaveswithspectroscopicanalysis
_version_ 1808106347222269952
spelling RepoAGROSAVIA386852023-12-14T03:00:56Z Estimating chlorophyll and nitrogen contents in maize (Zea mays L.) leaves with spectroscopic analysis Ramos García, Carlos Arturo Martínez Martínez, Luis Joel Bernal Riobo, Jaime Humberto Cultivo - F01 Reflectancia Maíz Cultivo Nutrición de las plantas Transitorios http://aims.fao.org/aos/agrovoc/c_28538 http://aims.fao.org/aos/agrovoc/c_12332 http://aims.fao.org/aos/agrovoc/c_2018 http://aims.fao.org/aos/agrovoc/c_16379 The relationship between reflectance and chlorophyll (Chl) and nitrogen (N) contents in maize leaves was analyzed to identify useful spectral indices for diagnosing the nutritional status of crops in terms of N. An experiment was carried out in random blocks with five treatments of nitrogen fertilizer (0, 50, 100, 150, 200 kg ha-1) and four repetitions and the foliar spectral responses were measured with a FieldSpec 4 spectroradiometer in three phenological stages. Several spectral indices and values of red edge position (REP) were calculated using various methods. Red-edge position linear interpolation (REP-L), Red-edge position linear extrapolation (REP-LE), REP-Inverted Gaussian fitting technique (REP-IG), REP-Polynomial fitting technique (REP-P) and NDVI had the best relationship with chlorophyll and nitrogen contents. The first derivative of reflectance, between 560 and 760 nm, transformed by the normal state variable (SNV) also had highly significant correlation coefficients with the N, Chl, and yield. Additionally, the corn yield showed highly significant correlations with the N and Chl contents. From the point of view of the diagnosis of the nutritional status of corn, the spectral indices and REP values were suitable for establishing the nutritional status of corn in relation to N in the phenological stages V8 and R1. Maíz-Zea mays 2023-12-13T19:46:47Z 2023-12-13T19:46:47Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/13398 2422-3719 http://hdl.handle.net/20.500.12324/38685 https://doi.org/10.19053/rcch.2022v16i1.13398 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Revista Colombiana de Ciencias Hortícolas 16 1 1 15 Barker, A.V. and D.J. Pilbeam (eds.). 2015. Handbook of plant nutrition. 2nd ed. CRC Press, Boca Raton, FL. Doi: 10.1201/b18458 Barnes, R., M. Dhanoa, and S. Lister. 1993. Letter: Correction to the description of Standard Normal Variate (SNV) and De-Trend (DT) Transformations in practical spectroscopy with applications in food and beverage analysis. J. Near Infrar. Spectros. 1(1), 185. Doi: 10.1255/jnirs.21 Campuzano Duque, L.F., S. Caicedo Guerrero, L. Narro, and A. Herbin. 2014. Corpoica H5: primer híbrido de maíz amarillo de alta calidad de proteína (QPM) para la altillanura plana colombiana. Corpoica Cienc. Tecnol. Agropecu. 15(2), 173-182. Doi: 10.21930/rcta. vol15_num2_art:357 Chen, P., D. Haboudane, N. Tremblay, J. Wang, P. Vigneault, and B. Li. 2010. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 114(2), 1987-1997. Doi: 10.1016/j.rse.2010.04.006 Cho, M.A. and A.K. Skidmore. 2006. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 101(2), 181-193. Doi: 10.1016/j. rse.2005.12.011 Colombia IGAC, Instituto Geográfico Agustín Codazzi. 2004. Estudio general de suelos y zonificación de tierras, departamento de Meta. Bogota Croft, H., J.M. Chen, and Y. Zhang. 2014. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 17, 119-130. Doi: 10.1016/j.ecocom.2013.11.005 Daughtry, C.S.T., C.L. Walthall, M.S. Kim, E. Brown de Colstoun, and J.E. McMurtrey III. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74(2), 229- 239. Doi: 10.1016/S0034-4257(00)00113-9 Del Corso, M., R.P. Lollato, N. Macnack, J. Mullock, and B.R. Raun. 2013. Evaluation of trimble hand held crop sensor and GreenseekerTM: sensors at different heights and for various crops. In: https://www.nue.okstate. edu/Pocket_Sensor/Pocket_Sensor.htm; consulted: May, 2021 Dwyer, L.M., D.W. Stewart, E. Gregorich, A.M. Anderson, B.L. Ma, and M. Tollenaar, 1995. Quantifying the nonlinearity in chlorophyll meter response to corn leaf nitrogen concentration. Can. J. Plant Sci. 75, 179-182. Doi: 10.4141/cjps95-030 Elmetwalli, A.H. and A.N. Tyler. 2020. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground – Based remotely sensed data. Agric. Water Manage. 242, 106413. Doi: 10.1016/j.agwat.2020.106413 Feng, W., X. Yao, Y. Zhu, Y.C. Tian, and W.X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28(3), 394-404. Doi: 10.1016/j.eja.2007.11.005 Giraldo-Betancourt, C., E.A. Velandia-Sánchez, G. Fischer, S. Gómez-Caro, and L.J. Martínez. 2020. Hyperspectral response of cape gooseberry (Physalis peruviana L.) plants inoculated with Fusarium oxysporum f. sp. physali for early detection. Rev. Colomb. Cienc. Hortíc. 14(3), 301-313. Doi: 10.17584/rcch.2020v14i3.10938 Gitelson, A.A., M.N. Merzlyak, and H.K. Lichtenthaler. 1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148(3-4), 501-508. Doi: 10.1016/ S0176-1617(96)80285-9 Gitelson, A.A., A. Viña, V. Ciganda, D.C. Rundquist, and T.J. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32(8), L08403. Doi: 10.1029/2005GL022688 Guyot, G. and F. Baret. 1988. Utilisation de la haute resolution spectrale pour suivre L’etat des couverts vegetaux. pp. 279-286. In: Guyenne, T.D. and J.J. Hunt (eds.). Proc. 4th Conf. Spectral Signatures of Objects in Remote Sensing. European Space Agency, Aussois, France. Inskeep, W.P. and P.R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77(2), 483-485. Doi: 10.1104/pp.77.2.483 Kleinbaum, D.G., L.L. Kupper, and A. Nizam. 2014. Applied regression analysis and other multivariable methods. 5th ed. Cengage Learning, Boston, MA. Lee, Y. J., C.M. Yang, K.W. Chang, and Y. Shen. 2011. Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Botanical Studies 52(3), 295-303. Li, F., Y. Miao, G. Feng, F. Yuan, S. Yue, X. Gao, Y. Liu, B. Liu, S.L. Ustin, and X. Chen. 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop. Res. 157, 111- 123. Doi: 10.1016/j.fcr.2013.12.018 Martínez, L.J. 2017. Relationship between crop nutritional status, spectral measurements and Sentinel 2 images. Agron. Colomb. 35(2), 205-215. Doi: 10.15446/agron. colomb.v35n2.62875 Martínez, L.J. and A. Ramos. 2015. Estimation of chlorophyll concentration in maize using spectral reflectance. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40-7/W3, 65-71. Doi: 10.5194/ isprsarchives-XL-7-W3-65-2015 Miller, J.R., E.W. Hare, and J. Wu. 1990. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Int. J. Remote Sens. 11(10), 1755-1773. Doi: 10.1080/01431169008955128 Myneni, R.B. and D.L. Williams. 1994. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49(3), 200-211. Doi: 10.1016/0034-4257(94)90016-7 Palka, M., A.M, Manschadi, L. Koppensteiner, T. Neubauer, and G.F. Fitzgerald. 2021. Evaluating the performance of the CCCI-CNI index for estimating N status of winter wheat. Eur. J. Agron. 130, 126346. Doi: 10.1016/j.eja.2021.126346 Peñuelas, J., I. Filella, and J.A. Gamon. 1995. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291-296. Doi: 10.1111/ j.1469-8137.1995.tb03064.x Pu, R., P. Gong, G.S. Biging, and M.R. Larrieu. 2003. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens. 41(4), 916-921. Doi: 10.1109/TGRS.2003.813555 Ranjan, A.K. and B.R. Parida. 2020. Estimating biochemical parameters of paddy using satellite and near-proximal sensor data in Sahibganj Province, Jharkhand (India). Remote Sens. Appl.: Soc. Environ. 18, 100293. Doi: 10.1016/j.rsase.2020.100293 Schlemmer, M.R., D.D. Francis, J.F. Shanahan, and J.S. Schepers. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J. 97(1), 106-112. Doi: 10.2134/agronj2005.0106 Schlemmer, M., A. Gitelson, J. Schepers, R. Ferguson, Y. Peng, J. Shanahan, and D. Rundquist. 2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 25, 47-54. Doi: 10.1016/j.jag.2013.04.003 Savitzky, A. and M.J. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analyt. Chem. 36(8), 1627-1639. Doi: 10.1021/ ac60214a047 Serrano, L., J. Peñuelas, and S.L. Ustin. 2002. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 81(2- 3), 355-364. Doi: 10.1016/S0034-4257(02)00011-1 Sims, D.A. and J.A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81, 337-354. Doi: 10.1016/S0034-4257(02)00010-X Thompson, R.B., N. Tremblay, M. Fink, M. Gallardo, and F.M. Padilla. 2017. Tools and strategies for sustainable nitrogen fertilisation of vegetable crops. pp. 11-63. In: Tei, F., S. Nicola, and P. Benincasa (eds.). Advances in research on fertilization management of vegetable crops. Springer, Cham, Switzerland. Doi: 10.1007/978-3-319-53626-2_2 Wan, L., Z. Tang, J. Zhang, S. Chen, W. Zhou, and H. Cen. 2021. Upscaling from leaf to canopy: Improved spectral indices for leaf biochemical traits estimation by minimizing the difference between leaf adaxial and abaxial surfaces. Field Crops Res. 274, 108330. Doi: 10.1016/j.fcr.2021.108330 Wang, Z., J. Chen, J. Zhang, Y. Fan, Y. Cheng, B. Wang, X. Wu, X. Tan, T. Tan, S. Li, M.A. Raza, X. Wang, T. Yong, W. Liu, J. Liu, J. Du, Y. Wu, W. Yang, and F. Yang. 2021. Predicting grain yield and protein content using canopy reflectance in maize grown under different water and nitrogen levels. Field Crops Res. 260, 107988. Doi: 10.1016/j.fcr.2020.107988 Wen, P.-F., J. He, F. Ning, R. Wang, Y.-H. Zhang, and J. Li. 2019. Estimating leaf nitrogen concentration considering unsynchronized maize growth stages with canopy hyperspectral technique. Ecol. Indic. 107, 105590. Doi: 10.1016/j.ecolind.2019.105590 Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 148(8-9), 1230-1241. Doi: 10.1016/j. agrformet.2008.03.005 Yu, K., V. Lenz-Wiedemann, X. Chen, and G. Bareth. 2014. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS J. Photogramm. Remote Sens. 97, 58-77. Doi: 10.1016/j. isprsjprs.2014.08.005 Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Universidad Pedagógica y Tecnológica de Colombia - UPTC Tunja (Colombia) Revista Colombiana de Ciencias Hortícolas; Vol. 16 (2022): Revista Colombiana de Ciencias Hortícolas;p. 1 -15.