Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species

The niche-centroid hypothesis states that populations that are distributed near the centroid of the species' ecological niche will have higher fitness-related attributes, such as population abundance and genetic diversity than populations near the edges of the niche. Empirical evidence based on...

Full description

Bibliographic Details
Main Authors: Ochoa Zavala, Maried, Osorio Olvera, Luis, Cerón Souza, Ivania, Rivera Ocasio, Elsie, Jiménez Lobato, Vania, Núñez Farfán, Juan
Format: article
Language:Inglés
Published: Frontiers in Conservation Science 2023
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcosc.2021.795365
http://hdl.handle.net/20.500.12324/38683
id RepoAGROSAVIA38683
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Genética vegetal y fitomejoramiento - F30
Avicennia
Variación genética
Precipitación artificial
Textura del suelo
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_739
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_640
http://aims.fao.org/aos/agrovoc/c_7199
spellingShingle Genética vegetal y fitomejoramiento - F30
Avicennia
Variación genética
Precipitación artificial
Textura del suelo
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_739
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_640
http://aims.fao.org/aos/agrovoc/c_7199
Ochoa Zavala, Maried
Osorio Olvera, Luis
Cerón Souza, Ivania
Rivera Ocasio, Elsie
Jiménez Lobato, Vania
Núñez Farfán, Juan
Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
description The niche-centroid hypothesis states that populations that are distributed near the centroid of the species' ecological niche will have higher fitness-related attributes, such as population abundance and genetic diversity than populations near the edges of the niche. Empirical evidence based on abundance and, more recently, genetic diversity data support this hypothesis. However, there are few studies that test this hypothesis in coastal species, such as mangroves. Here, we focused on the black mangrove Avicennia germinans. We combined ecological, heterozygosity, and allelic richness information from 1,419 individuals distributed in 40 populations with three main goals: (1) test the relationship between distance to the niche centroid and genetic diversity, (2) determine the set of environmental variables that best explain heterozygosity and allelic richness, and (3) predict the spatial variation in genetic diversity throughout most of the species' natural geographic range. We found a strong correlation between the distance to the niche centroid and both observed heterozygosity (Ho; ρ2 = 0.67 P < 0.05) and expected heterozygosity (He; ρ2 = 0.65, P < 0.05). The niche variables that best explained geographic variation in genetic diversity were soil type and precipitation seasonality. This suggests that these environmental variables influence mangrove growth and establishment, indirectly impacting standing genetic variation. We also predicted the spatial heterozygosity of A. germinans across its natural geographic range in the Americas using regression model coefficients. They showed significant power in predicting the observed data (R2 = 0.65 for Ho; R2 = 0.60 for He), even when we considered independent data sets (R2= 0.28 for Ho; R2 = 0.25 for He). Using this approach, several genetic diversity estimates can be implemented and may take advantage of population genomics to improve genetic diversity predictions. We conclude that the level of genetic diversity in A. germinans is in agreement with expectations of the niche-centroid hypothesis, namely that the highest heterozygosity and allelic richness (the basic genetic units for adaptation) are higher at locations of high environmental suitability. This shows that this approach is a potentially powerful tool in the conservation and management of this species, including for modelling changes in the face of climate change.
format article
author Ochoa Zavala, Maried
Osorio Olvera, Luis
Cerón Souza, Ivania
Rivera Ocasio, Elsie
Jiménez Lobato, Vania
Núñez Farfán, Juan
author_facet Ochoa Zavala, Maried
Osorio Olvera, Luis
Cerón Souza, Ivania
Rivera Ocasio, Elsie
Jiménez Lobato, Vania
Núñez Farfán, Juan
author_sort Ochoa Zavala, Maried
title Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
title_short Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
title_full Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
title_fullStr Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
title_full_unstemmed Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species
title_sort reduction of genetic variation when far from the niche centroid: prediction for mangrove species
publisher Frontiers in Conservation Science
publishDate 2023
url https://www.frontiersin.org/articles/10.3389/fcosc.2021.795365
http://hdl.handle.net/20.500.12324/38683
work_keys_str_mv AT ochoazavalamaried reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
AT osorioolveraluis reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
AT ceronsouzaivania reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
AT riveraocasioelsie reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
AT jimenezlobatovania reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
AT nunezfarfanjuan reductionofgeneticvariationwhenfarfromthenichecentroidpredictionformangrovespecies
_version_ 1808106436163534848
spelling RepoAGROSAVIA386832023-12-14T03:01:00Z Reduction of Genetic Variation When Far From the Niche Centroid: Prediction for Mangrove Species Ochoa Zavala, Maried Osorio Olvera, Luis Cerón Souza, Ivania Rivera Ocasio, Elsie Jiménez Lobato, Vania Núñez Farfán, Juan Genética vegetal y fitomejoramiento - F30 Avicennia Variación genética Precipitación artificial Textura del suelo Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_739 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_640 http://aims.fao.org/aos/agrovoc/c_7199 The niche-centroid hypothesis states that populations that are distributed near the centroid of the species' ecological niche will have higher fitness-related attributes, such as population abundance and genetic diversity than populations near the edges of the niche. Empirical evidence based on abundance and, more recently, genetic diversity data support this hypothesis. However, there are few studies that test this hypothesis in coastal species, such as mangroves. Here, we focused on the black mangrove Avicennia germinans. We combined ecological, heterozygosity, and allelic richness information from 1,419 individuals distributed in 40 populations with three main goals: (1) test the relationship between distance to the niche centroid and genetic diversity, (2) determine the set of environmental variables that best explain heterozygosity and allelic richness, and (3) predict the spatial variation in genetic diversity throughout most of the species' natural geographic range. We found a strong correlation between the distance to the niche centroid and both observed heterozygosity (Ho; ρ2 = 0.67 P < 0.05) and expected heterozygosity (He; ρ2 = 0.65, P < 0.05). The niche variables that best explained geographic variation in genetic diversity were soil type and precipitation seasonality. This suggests that these environmental variables influence mangrove growth and establishment, indirectly impacting standing genetic variation. We also predicted the spatial heterozygosity of A. germinans across its natural geographic range in the Americas using regression model coefficients. They showed significant power in predicting the observed data (R2 = 0.65 for Ho; R2 = 0.60 for He), even when we considered independent data sets (R2= 0.28 for Ho; R2 = 0.25 for He). Using this approach, several genetic diversity estimates can be implemented and may take advantage of population genomics to improve genetic diversity predictions. We conclude that the level of genetic diversity in A. germinans is in agreement with expectations of the niche-centroid hypothesis, namely that the highest heterozygosity and allelic richness (the basic genetic units for adaptation) are higher at locations of high environmental suitability. This shows that this approach is a potentially powerful tool in the conservation and management of this species, including for modelling changes in the face of climate change. 2023-12-13T19:32:21Z 2023-12-13T19:32:21Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.frontiersin.org/articles/10.3389/fcosc.2021.795365 2673-611X http://hdl.handle.net/20.500.12324/38683 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Frontiers in Conservation Science 2 2 1 14 Abeli, T., Gentili, R., Mondoni, A., Orsenigo, S., and Rossi, G. (2014). Effects of marginality on plant population performance. J. Biogeogr. 41, 239–249. doi: 10.1111/jbi.12215 Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Rev. Marine Sci. 6, 195–219. doi: 10.1146/annurev-marine-010213-135020 Alongi, D. M. (2015). The impact of climate change on mangrove forest. Curr. Climate Change Rep. 1, 30–39. doi: 10.1007/s40641-015-0002-x Alongi, D. M. (2018). “Climate regulation by capturing carbon in mangroves,” in The Wetland Book: I: Structure and Function, Management, and Methods, eds C. M. Finlayson, M. Everard, K. Irvine, R. J. McInnes, B. A. Middleton, A. A. van Dam, and N. C. Davidson (Dordrecht: Springer), 1213–1219. doi: 10.1007/978-90-481-9659-3_236 Altamiranda-Saavedra, M., Osorio-Olvera, L., Yáñez-Arenas, C., Marín-Ortiz, J. C., and Parra-Henao, G. (2020). Geographic abundance patterns explained by niche centrality hypothesis in two Chagas disease vectors in Latin America. PLoS ONE. 15:e241710. doi: 10.1371/journal.pone.0241710 Arreola-Lizárraga, J. A., Flores-Verdugo, F. J., and Ortega-Rubio, A. (2004). Structure and litter fall of an arid mangrove stand on the Gulf of California, Mexico. Aquatic Botany 79, 137–143. doi: 10.1016/j.aquabot.2004.01.012 Assis, J., Tyberghein, L., Bosh, S., Verbruggen, H., Serrão, E. A., and De Clerck, O. (2017). Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27, 277–284. doi: 10.1111/geb.12693 Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, T., et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011 Benoliel-Carvalho, S., Torres, J., Tarroso, P., and Velo-Antón, G. (2019). Genes on the egde: a framework to detect genetic diversity imperiled by climate change. Global Change Biol. 25, 4034–4047. doi: 10.1111/gcb.14740 Blanco-Canqui, H., and Lal, R. (2004). Mechanisms of carbon sequestration in soil aggregates. Critical Rev. Plant Sci. 23, 481–504. doi: 10.1080/07352680490886842 Brown, J. H. (1984). On the relationship between abundance and distribution of species. Am. Natural. 124, 255–279. Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., et al. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. U.S.A. 111, 723–727. doi: 10.1073/pnas.1315800111 Cerón-Souza, I., Gonzalez, E. G., Schwarzbach, A. E., Salas-Leiva, D. E., RiveraOcasio, E., Toro-Perea, N., et al. (2015). Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499. doi: 10.1002/ece3. 1569 Clough, B. F. (1992). “Primary productivity and growth of mangroves forest,” in Tropical Mangrove Ecosystem, eds A. I. Robertson and D. M. Alongi. (Washington, DC: American Geophysical Union), 225–249. doi: 10.1029/CE041p0225 Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. doi: 10.1038/387253a0 Crase, B., Liedloft, A., Vest, P. A., Burgman, M. A., and Wintle, B. A. (2013). Hydroperiod is the main driver of the spatial pattern of the dominance in mangrove communities. Global Ecol. Biogeogr. 22, 806–817. doi: 10.1111/geb.12063 Dallas, T., Decker, R. R., and Hastings, A. (2017). Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20, 1526–1533. doi: 10.1111/ele.12860 Diniz-Filho, J. A., Nabout, J. C., Bini, L. M., Soares, T. N., Pires de Campos Telles, M., de Marco, P., et al. (2009). Niche modelling and landscape genetics of Caryocar Brasiliense (“Pequi” tree: Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central-peripheral population patterns. Tree Genet. Genomes 5, 617–627. doi: 10.1007/s11295-009-0214-0 Diniz-Filho, J. A., Rodrigues, H., Pires de Campos Telles, M., de Oliveira, G., Terribile, L. C., Soares, T. N., et al. (2015). Correlation between genetic diversity and environmental suitability: taking uncertainty from ecological niche models into account. Mol. Ecol. Resources 15, 1059–1066. doi: 10.1111/1755-0998.12374 Diop, E. S., Soumare, A., Diallo, N., and Guisse, A. (1997). Recent changes of mangroves of the Saloum River Estuary, Senegal. Mangroves Salt Marshes 1, 163–172. doi: 10.1023/A:1009900724172 Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., and Kanninen, M. (2011). Mangroves among the most carbon-rich forests i the Tropics. Nat. Geosci. 4, 293–297. doi: 10.1038/ngeo1123 Duke, N. C. (2017). “Mangrove Floristics and Biogeography Revisited: Further Deductions from Biodiversity Hot Spots, Ancestral Discontinuities, and Common Evolutionary Processes,” in Mangrove Ecosystems: A Global Biogeographic Perspective, eds V. H. Rivera-Monroy, S. Y. Lee, E. Kristensen, and R. R. Twilley (Cham: Springer International Publishing AG), 17–53. doi: 10.1007/978-3-319-62206-4_2 Duke, N. C., Ball, M. C., and Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47. doi: 10.2307/2997695 Eckert, C. G., Samis, E., and Lougheed, S. C. (2008). Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x Ellegren, H. (2000). Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genet. 24, 400–402. doi: 10.1038/74249 Ellegren, H., and Galtier, N. (2016). Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. doi: 10.1038/nrg.2016.58 Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resources 10, 564–567. doi: 10.1111/j.1755-0998.2010.02847.x Feng, W. T., Plante, A. F., and Six, J. (2013). Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry 112, 81–93. doi: 10.1007/s10533-011-9679-7 Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservat. Biol. 10, 1500–1506. Frankham, R. (2005). Genetics and extinction. Conserv. Biol. 126, 131–140. doi: 10.1016/j.biocon.2005.05.002 Frankham, R. (2012). How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108, 167–178. doi: 10.1038/hdy.2011.66 Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., et al. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 20, 154–159. doi: 10.1111/j.1466-8238.2010.00584.x Gonçalves, D. R. P., de Moraes, S.á, J. C., Mishra, U., Cerri, C. E. P., Ferreira, L. A., and Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma 286, 87–97. doi: 10.1016/j.geoderma.2016.10.021 Goudet, J., and Jombart, T. (2015). HIERFSTAT: Estimation and Tests of Hierarchical F-Statistics. R package version 0.04-22. Available online at: https:// CRAN.R-project.org/package=hierfstat Griffin, P. C., and Willi, Y. (2014). Evolutionary shifts to self-fertilization restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17, 484–490. doi: 10.1111/ele.12248 Gruba, P., Socha, J., Błonska, E., and Lasota, J. (2015). Effect of variable soil texture, ´ metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Sci. Total Environ. 521–522, 90–100. doi: 10.1016/j.scitotenv.2015.03.100 Guo, W., Banerjee, A. K., Ng, W. L., Yuan, Y., Li, W., and Huang, Y. (2020). Chloroplast DNA phylogeography of the Holly mangrove Acanthus ilicifolius in the Indo-West Pacific. Hydrobiologia 847, 3591–3608. doi: 10.1007/s10750-020-04372-1 Hamrick, J. L., and Godt, J. W. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions R. Soc. B. 351, 1291–1298. doi: 10.1098/rstb.1996.0112 Hearn, A. J., Cushman, S. A., Goossens, B., Ross, J., Ewan, A. M., Hunter, L. T. B., et al. (2019). Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo. Landscape Ecol. 34, 275–290. doi: 10.1007/s10980-018-0758-1 Hendry, A. P., Kinnison, M. T., Heino, M., Day, T., Smith, T. B., Fitt, G., et al. (2011). Evolutionary principles and their practical application. Evolut. Applicat. 4, 159–183. doi: 10.1111/j.1752-4571.2010.00165.x Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., et al. (2014). SoilGrids1km - Global Soil Information Based on Automated Mapping. PLoS ONE 9:e105992. doi: 10.1371/journal.pone.0105992 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution interpolated climates surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. doi: 10.1002/joc.1276 Hoffmann, A. A., and Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature. 470, 479–485, doi: 10.1038/nature09670 Hossain, M. D., and Nuruddin, A. A. (2016). Soil and mangrove: a review. J. Environ. Sci. Tech. 9, 198–207. doi: 10.3923/jest.2016.198.207 Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quant. Biol. 22, 415–427. doi: 10.1101/SQB.1957.022.01.039 Hutchinson, J., Manica, A., Swetnam, R., Balmford, A., and Spalding, M. (2014). Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240. doi: 10.1111/conl.12060 IUSS Working Group WRB (2007). World Reference Base for Soil Resources: A Framework for International Classification, Correlation and Communication. World Soil Resources Reports No. 103. FAO, Rome. 128 Jardine, S. L., and Siikamäki, J. V. (2014). A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 9:104013. doi: 10.1088/1748-9326/9/10/104013 Jiménez, L., Soberón, J., Christen, J. A., and Soto, D. (2019). On the problem of modeling a fundamental niche from occurrence data. Ecol. Modell. 397, 74–83. doi: 10.1016/j.ecolmodel.2019.01.020 Jobbágy, E. G., and Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–236. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 Jordan, H. D. (1964). The relation of the vegetation and soil to development of mangroves swamps for rice growing in Sierra Leone. J. Appl. Ecol. 1, 209–212. doi: 10.2307/2401600 Kennedy, J. P., Preziosi, R. F., Rowntree, J. K., and Feller, I. C. (2020). Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Mol. Ecol. 29, 704–719. doi: 10.1111/mec.15365 Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press. 367 p. doi: 10.1017/CBO97805116 23486 Krauss, K. W., Lovelock, C. E., McKee, K. L., Lopez-Hoffman, L., Ewe, S. M. L., and Sousa, W. P. (2008). Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89, 105–127. doi: 10.1016/j.aquabot.2007.12.014 Lange, M., Eisenhauer, N., Sierra, C. A., Besser, H., Engels, C., Griffiths, R. I., et al. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6:6707. doi: 10.1038/ncomms7707 Li, Q., Qi, F., and Luxin, Z. (2010). Study of the height growth dynamic based on tree-ring data in Populus euphratica from the lower reach of the Heihe River, China. Dendrochronologia 28, 49–64. doi: 10.1016/j.dendro.2009.03.004 Lira-Noriega, A., and Manthey, J. D. (2014). Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68, 1082–1093. doi: 10.1111/evo.12343 Maguire, B. (1973). Niche response structure and the analytical potentials of its relationship to the habitat. Am. Natural. 107, 213–246 Martínez-Meyer, E., Díaz-Porras, D. F., Peterson, A. T., and Yañez-Arenas, C. (2013). Ecological niche structure and rangewide abundance patterns of species. Biol. Lett. 9:20120637. doi: 10.1098/rsbl.2012.0637 Matsui, N., Meepol, W., and Chukwamdee, J. (2015). Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. J. Marine Sci. Eng. 3, 1404–1424. doi: 10.3390/jmse3041404 McMillan, C. (1975). “Interaction of soil texture with salinity tolerences of black mangrove (Avicennia) and white mangrove (Laguncularia) from North America,” in Proceedings of the International Symposium on the Biology and Management of Mangroves, eds G. E.Walsh, S. C. Snedaker, and H. J. Teas (Gainesville: University of Florida), 561–566 Méndez-Alonzo, R., and López-Portillo, J. (2008). Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica 40, 449–456. doi: 10.1111/j.1744-7429.2008.00397.x Micheletti, S. J., and Storfer, A. (2015). A test of the central-marginal hypothesis using population genetics and ecological niche modelling in an endemic salamander (Ambystoma barbourin). Mol. Ecol. 24, 967–979. doi: 10.1111/mec.13083 Mori, G. M., Zucchi, M. I., and Souza, A. P. (2015). Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of Mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10:e0118710. doi: 10.1371/journal.pone.0118710 Nettel, A., and Dodd, R. S. (2007). Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61, 958–971. doi: 10.1111/j.1558-5646.2007.00070.x Ochoa-Zavala, M., Jaramillo-Correa, J. P., Piñero, D., Nettel-Hernanz, A., and Núñez-Farfán, J. (2019). Data from: contrasting colonization patterns of black mangrove (Avicennia germinans (L.) L.) gene pools along the Mexican coasts. Dryad Digital Repository doi: 10.5601/dryad.4r0q7m5 Osorio-Olvera, L., Falconi, M., and Soberón, J. (2016). Sobre la relación entre idoneidad del hábitat y la abundancia poblacional bajo diferentes escenarios de dispersión. Revista Mexicana de Biodiversidad 87, 1080–1088. doi: 10.1016/j.rmb.2016.07.001 Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras-Díaz, R. G., et al. (2020b). ntbox: an r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol. 11, 1199–1206. doi: 10.1111/2041-210X.13452 Osorio-Olvera, L., Soberón, J., and Falconi, M. (2019). On population abundance and niche structure. Ecography 42, 1415–1425. doi: 10.1111/ecog.04442 Osorio-Olvera, L., Yañez-Arenas, C., Martínez-Meyer, E., and Peterson, A. T. (2020a). Relationships between population densities and nichecentroid distances in North American birds. Ecol. Lett. 23, 555–564. doi: 10.1111/ele.13453 Pemberton, T. J., Sandefur, C. I., Jakobsson, M., and Rosenberg, N. A. (2009). Sequence determinants of human microsatellite variability. BMC Genomics 10, 612, doi: 10.1186/1471-2164-10-612 Petit, R. J., and Hampe, A. (2006). Some evolutionary consequences of being a tree. Annual Rev. Ecol. Evol. Systemat. 37, 187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215 Pfeifer, M., Schatz, B., Picó, F. X., Passalacqua, N. G., Fay, M. F., Carey, P. D., et al. (2009). Phylogeography and genetic structure of the orchid Himantoglossum hircinum (L.) Spreng. across its European central-marginal gradient. J. Biogeogra. 36, 2353–2365. doi: 10.1111/j.1365-2699.2009.02168.x Pironon, S., Villellas, J., Morris, W. F., Doak, D. F., and García, M. B. (2015). Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations? Global Ecol. Biogeogr. 24, 611–620. doi: 10.1111/geb.12263 Quisthoudt, K., Schmitz, N., Randin, C. F., Dahdouh-Guebas, F., Robert, E. M. R., and Koedam, N. (2012). Temperature variation among mangrove latitudinal range limits worldwide. Trees 26, 1919–1931. doi: 10.1007/s00468-012-0760-1 R Core Team (2019). R: A Language and Environment for Statistical Computing. Available Online at: https://www.r-project.org Rabinowitz, D. (1981). “Seven forms of rarity,” in The Biological Aspects of Rare Plant Conservation, ed H. Synge (New York, NY: John Wiley and Sons Ltd.), 205–217. Rahman, M. S., Donoghue, D. N. M., and Bracken, L. J. (2021). Is soil organic carbon understated in the largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. Catena 200l:105159. doi: 10.1016/j.catena.2021.105159 Record, S., Charney, N. D., Zakaria, R. M., and Ellison, A. M. (2013). Projecting global mangrove species and community distributions under climate change. Ecosphere 4, 1–23. doi: 10.1890/ES12-00296.1 Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservat. Biol. 17, 230–237. doi: 10.1046/j.1523-1739.2003.01236.x Rodríguez-Medina, K., Yañez-Arenas, C., Peterson, A. T., Euán Ávila, J., and Herrera-Silveira, J. (2020). Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE 15:e0237701. doi: 10.1371/journal.pone.0237701 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, Y., et al. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263. doi: 10.1038/nature13685 Royston, P. (1995). Remark AS R94: A remark on algorithm AS 181: The W-test for Normality. J. R. Stat. Soc. Ser. C. 44, 547–551. Available Online at: https:// www.jstor.org/stable/2986146 Saiz, G., Bird, M. I., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T. R., et al. (2012). Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Glob. Chang. Biol. 18, 1670–1683. doi: 10.1111/j.1365-2486.2012.02657.x Santini, L., Pironon, S., Maiorano, L., and Thuiller, W. (2018). Addressing common pitfalls does not provide more support to geographical and ecological abundance-centre hypotheses. Ecography 42, 696–705. doi: 10.1111/ecog.04027 Smith, G. D. (1986). The Guy Smith Interviews: Rationale for Concepts in Soil Taxonomy. Department of Agronomy, Washington: New York State College of Agriculture and Life Science Cornell University. Washington, DC. 259. Soil Survey staff (2010). Keys to Soil Taxonomy. 11 edition. United States Department of Agriculture, Natural Resources Conservation Service. Washington, DC. 346pp. Spielman, D., Brook, B. W., and Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. PNAS 101, 15261–15264. doi: 10.1073/pnas.0403809101 Tomlinson, P. B. (2016). The Botany of Mangroves. Cambridge: Cambridge University Press. 418. doi: 10.1017/CBO9781139946575 Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F., and De Clerck, O. (2012). Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–281. doi: 10.1111/j.1466-8238.2011.00656.x Ukpong, I., E. (1997). Vegetation and its relation to soil nutrient and salinity in the Calabar mangrove swamp, Nigeria. Mangroves Salt Marshes 1, 211–218. doi: 10.1023/A:1009952700317 Väli, U., Einarsson, A., Waits, L., and Ellegren, H. (2008). To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol. Ecol. 17, 3808–3817, doi: 10.1111/j.1365-294X.2008.03876.x Wee, A. K. S., Mori, G. M., Lira-Medeiros, C. F., Núñez-Farfán, J., Takayama, K., Faulks, L., et al. (2018). The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209. doi: 10.1111/cobi. 13140 Wiens, J. A., Stralberg, D., Jongsomijit, D., Howell, C. A., and Snyder, M. A. (2009). Niches, model, and climate change: Assessing the assumptions and uncertainties. PNAS 106, 19729–19736. doi: 10.1073/pnas.0901639106 Wiesmeier, M., Barthold, F., Blank, B., and Kogel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using Random Forest modeling in a semiarid steppe ecosystem. Plant Soil. 340, 7–24. doi: 10.1007/s11104-010-0425-z Woodroffe, C. (1992). “Mangroves sediments and geomorphology,” in Tropical Mangrove Ecosystem, eds A. I. Robertson and D. M. Alongi (Washington, DC: American Geophysical Union), 7–41. doi: 10.1029/CE041p0007 Woodroffe, C. D., and Grindrod, J. (1991). Mangrove biogeography-the role of quaternary environmental and sea-level change. J. Biogeogr. 18, 479–492. doi: 10.2307/2845685 Woodward, F. I., and Williams, B. G. (1987). Climate and plant distribution at global and local scales. Vegetatio 69, 189–197. doi: 10.1007/BF00038700 Ximenes, A. C., Ponsoni, L., Lira, C. F., Koedam, N., and Dahdouh-Guebas, F. (2018). Does sea surface temperature contribute to determining range limits and expansion of mangroves in Eastern south America (Brazil)? Remote Sensing 10:1787. doi: 10.3390/rs10111787 Xiong, Y., Cakir, R., Phan, S. M., Ola, A., Krauss, K. W., and Lovelock, C. E. (2019). Global patterns of tree stem growth and stand aboveground wood production in mangrove forests. Forest Ecol. Manage. 444, 382–392. doi: 10.1016/j.foreco.2019.04.045 Yañez-Arenas, C., Martínez-Meyer, E., Mandujano, S., and Rojas-Soto, O. (2012). Modelling geographic patterns of population density of the white-tailed deer in central Mexico by implementing ecological niche theory. Oikos 121, 2081–2089. doi: 10.1111/j.1600-0706.2012.20350.x Zhong, Z., Chen, Z., Xu, Y., Ren, C., Yang, G., Han, X., et al. (2018). Relationship between soil organic carbon stocks and clay content under differentiation climatic conditions in Central China. Forests 9:598. doi: 10.3390/f9100598 Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Copyright © 2022 Ochoa-Zavala, Osorio-Olvera, Cerón-Souza, Rivera-Ocasio, Jiménez-Lobato and Núñez-Farfán. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Frontiers in Conservation Science Lausana (Suiza) Frontiers in Conservation Science; Vol. 2, Núm. 2 (2022): Frontiers in Conservation Science;p. 1 -14.