Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize
Background: The fall armyworm Spodoptera frugiperda is one of the major pests in maize crops, causing important production losses. The pest has rapidly spread worldwide, generating an urgent need to develop efcient and sus‑ tainable strategies for its control. In this work, the potential of integr...
Main Authors: | , , , , |
---|---|
Format: | article |
Language: | Inglés |
Published: |
BMC in United Kingdom
2023
|
Subjects: | |
Online Access: | https://doi.org/10.1186/s43170-022-00094-7 http://hdl.handle.net/20.500.12324/38681 https://doi.org/10.1186/s43170-022-00094-7 |
id |
RepoAGROSAVIA38681 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Cultivo - F01 Helicoverpa armigera Maíz Cultivo Control biológico Transitorios http://aims.fao.org/aos/agrovoc/c_30255 http://aims.fao.org/aos/agrovoc/c_12332 http://aims.fao.org/aos/agrovoc/c_2018 http://aims.fao.org/aos/agrovoc/c_918 |
spellingShingle |
Cultivo - F01 Helicoverpa armigera Maíz Cultivo Control biológico Transitorios http://aims.fao.org/aos/agrovoc/c_30255 http://aims.fao.org/aos/agrovoc/c_12332 http://aims.fao.org/aos/agrovoc/c_2018 http://aims.fao.org/aos/agrovoc/c_918 Gomez Valderrama, Juliana Andrea Cuartas Otalora, Paola Emilia Espinel Correal, Carlos Barrera Cubillos, Gloria Patricia Villamizar Rivero, Laura Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
description |
Background: The fall armyworm Spodoptera frugiperda is one of the major pests in maize crops, causing important
production losses. The pest has rapidly spread worldwide, generating an urgent need to develop efcient and sus‑
tainable strategies for its control. In this work, the potential of integrating nucleopolyhedrovirus- (NPV) and the fungus
Metarhizium rileyi to control S. frugiperda larvae was evaluated under laboratory, greenhouse, and feld conditions.
Methods: The mortality of S. frugiperda larvae was evaluated after the application of NPV and M. rileyi alone or in
combination using three concentrations (high, medium and low) under laboratory conditions. Then, two greenhouse
trials using maize plants were carried out to evaluate the efect of individual or combined applications of NPV and
M. rileyi on S. frugiperda mortality (frst trial) and fresh damage (second trial). Finally, a trial under feld conditions was
conducted to evaluate the performance of the treatment selected in the greenhouse assay.
Results: The combined use of NPV: M. rileyi applied simultaneously showed an additive efect in laboratory, causing
higher larval mortality than the biocontrol agents used separately. This efect was evident in the mixtures using the
concentration levels high:medium, medium:medium, and medium:high. Under greenhouse conditions, the use of a
50:50 ratio of the two entomopathogens also caused higher larval mortality and a signifcantly reduced insect dam‑
age to plants. Finally, under feld conditions, the individual or sequential application of NPV and M. rileyi using 100%
of their recommended doses, and the simultaneous application of both entomopathogens at 50% of their recom‑
mended doses, signifcantly reduced the recent foliar damage to levels under the threshold for economic losses (30%
fresh damage) while the damage reached 43% when control measures were not used.
Conclusion: The combined application of NPV and M. rileyi (two biocontrol agents with diferent mode of action)
demonstrated an additive efect that allows to reduce to half their recommended application doses. In this context,
the integration of both entomopathogens is a promising strategy to manage S. frugiperda, contributing to improve
the economic feasibility of biological control tools for the sustainable fall armyworm management. |
format |
article |
author |
Gomez Valderrama, Juliana Andrea Cuartas Otalora, Paola Emilia Espinel Correal, Carlos Barrera Cubillos, Gloria Patricia Villamizar Rivero, Laura |
author_facet |
Gomez Valderrama, Juliana Andrea Cuartas Otalora, Paola Emilia Espinel Correal, Carlos Barrera Cubillos, Gloria Patricia Villamizar Rivero, Laura |
author_sort |
Gomez Valderrama, Juliana Andrea |
title |
Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
title_short |
Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
title_full |
Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
title_fullStr |
Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
title_full_unstemmed |
Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
title_sort |
fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize |
publisher |
BMC in United Kingdom |
publishDate |
2023 |
url |
https://doi.org/10.1186/s43170-022-00094-7 http://hdl.handle.net/20.500.12324/38681 https://doi.org/10.1186/s43170-022-00094-7 |
work_keys_str_mv |
AT gomezvalderramajulianaandrea fungalandviralentomopathogensasacombinedstrategyforthebiologicalcontroloffallarmywormlarvaeinmaize AT cuartasotalorapaolaemilia fungalandviralentomopathogensasacombinedstrategyforthebiologicalcontroloffallarmywormlarvaeinmaize AT espinelcorrealcarlos fungalandviralentomopathogensasacombinedstrategyforthebiologicalcontroloffallarmywormlarvaeinmaize AT barreracubillosgloriapatricia fungalandviralentomopathogensasacombinedstrategyforthebiologicalcontroloffallarmywormlarvaeinmaize AT villamizarriverolaura fungalandviralentomopathogensasacombinedstrategyforthebiologicalcontroloffallarmywormlarvaeinmaize |
_version_ |
1808106821523603456 |
spelling |
RepoAGROSAVIA386812023-12-14T03:01:10Z Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize Gomez Valderrama, Juliana Andrea Cuartas Otalora, Paola Emilia Espinel Correal, Carlos Barrera Cubillos, Gloria Patricia Villamizar Rivero, Laura Cultivo - F01 Helicoverpa armigera Maíz Cultivo Control biológico Transitorios http://aims.fao.org/aos/agrovoc/c_30255 http://aims.fao.org/aos/agrovoc/c_12332 http://aims.fao.org/aos/agrovoc/c_2018 http://aims.fao.org/aos/agrovoc/c_918 Background: The fall armyworm Spodoptera frugiperda is one of the major pests in maize crops, causing important production losses. The pest has rapidly spread worldwide, generating an urgent need to develop efcient and sus‑ tainable strategies for its control. In this work, the potential of integrating nucleopolyhedrovirus- (NPV) and the fungus Metarhizium rileyi to control S. frugiperda larvae was evaluated under laboratory, greenhouse, and feld conditions. Methods: The mortality of S. frugiperda larvae was evaluated after the application of NPV and M. rileyi alone or in combination using three concentrations (high, medium and low) under laboratory conditions. Then, two greenhouse trials using maize plants were carried out to evaluate the efect of individual or combined applications of NPV and M. rileyi on S. frugiperda mortality (frst trial) and fresh damage (second trial). Finally, a trial under feld conditions was conducted to evaluate the performance of the treatment selected in the greenhouse assay. Results: The combined use of NPV: M. rileyi applied simultaneously showed an additive efect in laboratory, causing higher larval mortality than the biocontrol agents used separately. This efect was evident in the mixtures using the concentration levels high:medium, medium:medium, and medium:high. Under greenhouse conditions, the use of a 50:50 ratio of the two entomopathogens also caused higher larval mortality and a signifcantly reduced insect dam‑ age to plants. Finally, under feld conditions, the individual or sequential application of NPV and M. rileyi using 100% of their recommended doses, and the simultaneous application of both entomopathogens at 50% of their recom‑ mended doses, signifcantly reduced the recent foliar damage to levels under the threshold for economic losses (30% fresh damage) while the damage reached 43% when control measures were not used. Conclusion: The combined application of NPV and M. rileyi (two biocontrol agents with diferent mode of action) demonstrated an additive efect that allows to reduce to half their recommended application doses. In this context, the integration of both entomopathogens is a promising strategy to manage S. frugiperda, contributing to improve the economic feasibility of biological control tools for the sustainable fall armyworm management. Maíz-Zea mays 2023-12-13T19:09:23Z 2023-12-13T19:09:23Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://doi.org/10.1186/s43170-022-00094-7 2662-4044 http://hdl.handle.net/20.500.12324/38681 https://doi.org/10.1186/s43170-022-00094-7 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng CABI Agriculture and Bioscience 3 1 1 24 Aguirre N, Espinel C, Villamizar L, Cotes AM. Efecto del pH y de la actividad de agua sobre el desarrollo de Nomuraea rileyi (Hyphomycetes). Rev Colomb Entomol. 2009;35(2):138–44. Ayala O, Navarro F, Virla E. Evaluation of the attack rates and level of damages by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), afecting corn-crops in the northeast of Argentina. Rev Fac Cienc Agrar Uncuyo. 2013;45(2):1–12. Barrera G, Simón O, Villamizar L, Williams T, Caballero P. Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: genetic and phenotypic comparison of feld isolates from Colombia. Biol Control. 2011;58(2):113–20. Barrera G, Williams T, Villamizar L, Caballero P, Simón O. Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population. PLoS ONE. 2013;8(10): e77271. https://doi.org/10.1371/journal.pone. 0077271. Barrera G, Gómez-Valderrama J, Villamizar L. Efcacy of microencapsulated nucleopolyhedroviruses from Colombia as biological insecticides against Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Agron. 2017;66(2):267–74. Behle RW, Popham HJR. Laboratory and feld evaluations of the efcacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. J Invertebr Pathol. 2012;109:194–200. Biaggioni R, Daniel L, Martins C, Marcio O, Sanches M, Aguiar D, et al. Efcacy of an oil-based formulation combining Metarhizium rileyi and nucleo‑ polyhedroviruses against lepidopteran pests of soybean. J Appl Entomol. 2020. https://doi.org/10.1111/jen.12787. Bolzan A, Padovez FEO, Nascimento ARB, Kaiser IS, Lira EC, Amaral FSA, et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag Sci. 2019;75(10):2682–9 Bosa CF, Chávez D, Torres L, Paris A, Villamizar L, Cotes AM. Evaluation of natíve isolates of Nomuraea rileyi for the control of Spodoptera frugiperda (Lepi‑ doptera: Noctuidae). Rev Colomb Entomol. 2004;30(1):93–7. Casmuz A, Juárez ML, Socías MG, Murúa MG, Prieto S, Medina S, et al. Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Soc Entomol Argent. 2010;69(3–4):209–31 Cruz I, Figueiredo MLC, Valicente FH. Application rate trials with a nuclear polyhedrosis virus to control Spodoptera frugiperda (Smith) on maize. An Soc Entomol Bras. 1997;26(1):145–52. Du Plessis H, Schlemmer M-L, Van den Berg J. The efect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2020;11(4):228. https://doi.org/10.3390/insects11040228. Espinel-Correal C, Torres L, Villamizar LF, Bustillo-Pardey AE, Zuluaga MV, Cotes AM. Chapter 6. Entomopathogenic fungi in insect pests biological control. In: Cotes AM, editor. Control biológico de ftopatógenos, insectos y ácaros, vol. 1. Mosquera: Agrosavia; 2019. p. 334–63. Fernández J. Assessment of economic thresholds for Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize crop. Investig Agrar Prod prot Veg. 2002;17(3):1–8 Fuxa JR, Richter AR. Classical biological control in an ephemeral crop habitat with Anticarsia gemmatalis nucleopolyhedrovirus. Biocontrol. 1999;44:403–19. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noc‑ tuidae), a new alien invasive pest in West and Central Africa. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0165632. Gómez J, Guevara E, Barrera G, Cotes A, Villamizar L. Aislamiento, identifcación y caracterización de nucleopoliedrovirus nativos de Spodoptera fru‑ giperda en Colombia. Rev Fac Nac Agron Medellín. 2010;63(2):5465–75. Gómez J, Guevara J, Cuartas P, Espinel C, Villamizar L. Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and efect on arthropod populations in maize. Biocontrol Sci Technol. 2013;23(7):829–46 Grijalba EP, Espinel C, Cuartas PE, Chaparro ML, Villamizar LF. Metarhizium rileyi biopesticide to control Spodoptera frugiperda: stability and insecticidal activity under glasshouse conditions. Fungal Biol. 2018;122(11):1069– 1076. https://linkinghub.elsevier.com/retrieve/pii/S1878614618302526. Grzywacz D, Moore S. Production, formulation, and bioassay of baculoviruses for pest control. In: Lacey LA, editor. Microbial control of insect and mite pests: from theory to practice. Amsterdam: Elsevier; 2017. https://doi.org/ 10.1016/B978-0-12-803527-6.00007-X. Gulzar S, Wakil W, Shapiro-Ilan DI. Combined efect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory greenhouse and feld trials. Insects. 2021;12(456):1–17 Guo J, Wu S, Zhang F, Huang C, He K, Babendreier D, et al. Prospects for microbial control of the fall armyworm Spodoptera frugiperda: a review. BioControl. 2020. https://doi.org/10.1007/s10526-020-10031-0. Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses. 2015;7:2230–67 Henderson CF, Tilton EW. Tests with Acaricides against the brown wheat mite. J Econ Entomol. 1955;48(2):157–61. Jeger M, Bragard C, Cafer D, Candresse T, Chatzivassiliou E, DehnenSchmutz K, et al. Pest categorisation of Spodoptera frugiperda. EFSA J. 2017;15(7):4927. https://doi.org/10.2903/j.efsa.2017.4927. Jing D, Guo J, Jiang Y, Zhao J, Sethi A, He K, et al. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfelds using molecular techniques. Insect Sci. 2019;27:780–90. https://doi.org/10.1111/1744-7917.12700. Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegde K, et al. First report of the fall armyworm, Spodoptera frugiperda (J.E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Hortic Ecosyst. 2018;24(1):23–9. Kepler RM, Humber RA, Bischof JF, Rehner SA. Clarifcation of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia. 2014;106(4):811–29. Koppenhöfer AM, Kaya HK. Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol Control. 1997;8(2):131–7. Lasa R, Pagola I, Ibañez I, Belda JE, Williams T, Caballero P. Efcacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Sci Technol. 2007;17(3):221–32. https://doi.org/10.1080/09583150701211335. Lira EC, Bolzan A, Nascimento ARB, Amaral FSA, Kanno RH, Kaiser IS, et al. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spine‑ toram: inheritance and cross-resistance to spinosad. Pest Manag Sci. 2020;76(8):2674–80. https://doi.org/10.1002/ps.5812. Lobo M, Martinello M, Aguiar D, Souza D, Faria M, Espinel-correal C, et al. Within-host interactions of Metarhizium rileyi strains and nucleopolyhe‑ droviruses in Spodoptera frugiperda and Anticarsia gemmatalis (Lepidop‑ tera: Noctuidae). J Invertebr Pathol. 2019;162:10–8. https://doi.org/10. 1016/j.jip.2019.01.006 MagholiFard Z, Hesami S, Marzban R, Jouzani SG. Individual and combined biological efects of Bacillus thuringiensis and multicapsid nucleopolyhe‑ drovirus on the biological stages of Egyptian Cotton Leafworm, Spodoptera littoralis (B.) (Lep: Noctuidae). J Agric Sci Technol. 2020;22(2):465–76. Martínez Uribe RA, Kolln OT, de Castro Gava GJ. Evaluación de la densidad de plantas, componentes fenológicos de producción y rendimiento de gra‑ nos en diferentes materiales genéticos de maíz. Idesia. 2017;35(3):23–30. Montecalvo MP, Navasero MM. Metarhizium (= Nomuraea) rileyi (Farlow) Samson from Spodoptera exigua (Hübner) cross infects fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) Larvae. Philipp J Sci. 2021;150(1):193–9 Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, de Paula-Moraes SV, et al. Host plants of Spodoptera frugiperda (Lepidop‑ tera: Noctuidae) in the Americas. African Entomol. 2018;26(2):286–300. Morris ON, Trottier M, Converse V, Kanagaratnam P. Toxicity of Bacillus thuringiensis subsp. aizawai for Mamestra confgurata (Lepidoptera: Noctuidae). J Econ Entomol. 1996;89(2):359–65. Moscardi F, Sosa-gómez DR. Chapter VII-5 microbial control of insect pests of soybean. In: Lacey L, Kaya HK, editors. Field manual of techniques in invertebrate pathology. Springer: Berlin; 2007. p. 411–26 Nagoshi RN, Meagher RL, Hay-Roe M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol Evol. 2012;2(7):1458–67 Narciso J, Ormskirk M, Jones S, Rolston P, Moran-diez E, Hurst M, et al. Using multiple insecticidal microbial agents against diamondback moth lar‑ vae—does it increase toxicity? New Zealand J Agric Res. 2019. https://doi. org/10.1080/00288233.2019.1582074. Pauli G, Mascarin GM, Eilenberg J, Delalibera Júnior I. Within-host competition between two entomopathogenic fungi and a granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae). Insects. 2018. https://doi.org/10. 3390/insects9020064 Ruiz JC, Gómez-valderrama J, Chaparro M, Sotelo P, Villamizar L. Adjusting the conditions of a system for the in vivo production of a nucleopolyhedro‑ virus of Spodoptera frugiperda (Lepidoptera: Noctuidae). Biotecnol Apl. 2015;32:4311–6. Santos AM, Uribe LA, Ruiz JC, Tabima L, Gómez JA, Villamizar LF. Nucleop‑ oliedrovirus de Spodoptera frugiperda SfNPV003: compatibilidad con agroquímicos y estabilidad en condiciones de almacenamiento. Corpoica Cienc Tecnol Agropecu. 2014;15(2):219–28. Simón O, Williams T, López-Ferber M, Caballero P. Virus entry or the primary infection cycle are not the principal determinants of host specifc‑ ity of Spodoptera spp. nucleopolyhedroviruses. J Gen Virol. 2004;85(Pt 10):2845–55. Sisay B, Simiyu J, Mendesil E, Likhayo P, Ayalew G, Mohamed S, et al. Fall armyworm, Spodoptera frugiperda infestations in East Africa: assessment of damage and parasitism. Insects. 2019;10(195):1–10. https://doi.org/10. 3390/insects10070195. Song X-P, Liang Y-J, Zhang X-Q, Qin Z-Q, Wei J-J, Li Y-R, et al. Intrusion of fall armyworm (Spodoptera frugiperda) in sugarcane and its control by drone in China. Sugar Tech. 2020. https://doi.org/10.1007/s12355-020-00799-x Sosa-Gómez D. Microbial control of soybean pest insects and mites. In: Lacey L, editor. Microbial control of insect and mite pests from theory to prac‑ tice. Academic Press: Cambridge; 2017. p. 199. Sun XX, Hu CX, Jia HR, Wu QL, Shen XJ, Zhao SY, et al. Case study on the frst immigration of fall armyworm Spodoptera frugiperda invading into China. J Integr Agric. 2019;18:2–10 Tanada Y. A synopsis of studies on the synergistic property of an insect baculovirus: a tribute to Edward A Steinhaus. J Invertebr Pathol. 1985;45(2):125–38 Toepfer S, Fallet P, Kajuga J, Bazagwira D, Primitive I, Szalai M, Turlings T. Stream‑ lining leaf damage rating scales for the fall armyworm on maize. J Pest Sci. 2021. https://doi.org/10.1007/s10340-021-01359-2 Villamizar L, Barrera G, Cotes AM, Martínez F. Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyhedrovirus: physicochemical characterization, photostability and in vitro virus release. J Microencapsul. 2010;27(4):314–24. Wan J, Huang C, Li C-Y, Zhou H-X, Ren Y-L, Li Z-Y. Biology, invasion and management of the agricultural invader: fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J Integr Agric. 2021;20(3):646–63. Zar J. Biostatistical analysis. New Jersey: Prentice H; 1999. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf BMC in United Kingdom Londres (Inglaterra) CABI Agriculture and Bioscience; Vol. 3, Núm. 1 (2022): CABI Agriculture and Bioscience;p. 1 -24. |