Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing
The species Vigna unguiculata L. (Walp), commonly known as cowpea, is a multi-purpose legume that has been selected into three subspecies that are divided into grain, fodder and pod (yardlong bean) types. However, genetic bases for distinctions are not well understood. The purpose of this study was...
Main Authors: | , , |
---|---|
Format: | article |
Language: | Inglés |
Published: |
Universidad de Nashville
2023
|
Subjects: | |
Online Access: | https://doi.org/10.1186/s43897-022-00028-x http://hdl.handle.net/20.500.12324/38667 https://doi.org/10.1186/s43897-022-00028-x |
id |
RepoAGROSAVIA38667 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Inglés |
topic |
Genética vegetal y fitomejoramiento - F30 Diferenciación celular Cereales Forrajes Variación genética Transitorios http://aims.fao.org/aos/agrovoc/c_2265 http://aims.fao.org/aos/agrovoc/c_1474 http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_15975 |
spellingShingle |
Genética vegetal y fitomejoramiento - F30 Diferenciación celular Cereales Forrajes Variación genética Transitorios http://aims.fao.org/aos/agrovoc/c_2265 http://aims.fao.org/aos/agrovoc/c_1474 http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_15975 Wu, Xingbo Cortes Vera, Andres Javier Blair, Matthew W. Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
description |
The species Vigna unguiculata L. (Walp), commonly known as cowpea, is a multi-purpose legume that has been selected into three subspecies that are divided into grain, fodder and pod (yardlong bean) types. However, genetic bases for distinctions are not well understood. The purpose of this study was to apply genotyping-by-sequencing (GBS) and current reference genome for V. unguiculata to distinguish three subspecies and identify signatures of divergence. The collection of 130 accessions included 128 cultivated from: 1) ssp. cylindrica, fodder type; 2) ssp. sesquipedalis, pod vegetable type; and 3) ssp. unguiculata, grain type. Two wilds genotypes from spp. dekindtiana and spp. pubescens, were used to anchor phylogeny. A total of 11,083 highly informative single nucleotide polymorphisms (SNPs) were discovered. Wild accessions showed distinct genetic fingerprints and were separated from cultivated subspecies. Principal component analysis showed closer relationship between ssp. unguiculata and ssp. cylindrica compared to ssp. sesquipedalis. Relative differentiation of cultivated subspecies (with Fixation Index, FST) indicated the existence of discrete signatures of selection. This work clarifies the population structure, phylogeny, and domestication of cultivated cowpeas. Furthermore, significant genetic differences between grain and pod vegetable types can provide valuable information for future breeding in three cowpea groups. |
format |
article |
author |
Wu, Xingbo Cortes Vera, Andres Javier Blair, Matthew W. |
author_facet |
Wu, Xingbo Cortes Vera, Andres Javier Blair, Matthew W. |
author_sort |
Wu, Xingbo |
title |
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
title_short |
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
title_full |
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
title_fullStr |
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
title_full_unstemmed |
Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
title_sort |
genetic differentiation of grain, fodder and pod vegetable type cowpeas (vigna unguiculata l.) identified through single nucleotide polymorphisms from genotyping-by-sequencing |
publisher |
Universidad de Nashville |
publishDate |
2023 |
url |
https://doi.org/10.1186/s43897-022-00028-x http://hdl.handle.net/20.500.12324/38667 https://doi.org/10.1186/s43897-022-00028-x |
work_keys_str_mv |
AT wuxingbo geneticdifferentiationofgrainfodderandpodvegetabletypecowpeasvignaunguiculatalidentifiedthroughsinglenucleotidepolymorphismsfromgenotypingbysequencing AT cortesveraandresjavier geneticdifferentiationofgrainfodderandpodvegetabletypecowpeasvignaunguiculatalidentifiedthroughsinglenucleotidepolymorphismsfromgenotypingbysequencing AT blairmattheww geneticdifferentiationofgrainfodderandpodvegetabletypecowpeasvignaunguiculatalidentifiedthroughsinglenucleotidepolymorphismsfromgenotypingbysequencing |
_version_ |
1808107782960840704 |
spelling |
RepoAGROSAVIA386672024-04-17T16:13:45Z Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing Wu, Xingbo Cortes Vera, Andres Javier Blair, Matthew W. Genética vegetal y fitomejoramiento - F30 Diferenciación celular Cereales Forrajes Variación genética Transitorios http://aims.fao.org/aos/agrovoc/c_2265 http://aims.fao.org/aos/agrovoc/c_1474 http://aims.fao.org/aos/agrovoc/c_36108 http://aims.fao.org/aos/agrovoc/c_15975 The species Vigna unguiculata L. (Walp), commonly known as cowpea, is a multi-purpose legume that has been selected into three subspecies that are divided into grain, fodder and pod (yardlong bean) types. However, genetic bases for distinctions are not well understood. The purpose of this study was to apply genotyping-by-sequencing (GBS) and current reference genome for V. unguiculata to distinguish three subspecies and identify signatures of divergence. The collection of 130 accessions included 128 cultivated from: 1) ssp. cylindrica, fodder type; 2) ssp. sesquipedalis, pod vegetable type; and 3) ssp. unguiculata, grain type. Two wilds genotypes from spp. dekindtiana and spp. pubescens, were used to anchor phylogeny. A total of 11,083 highly informative single nucleotide polymorphisms (SNPs) were discovered. Wild accessions showed distinct genetic fingerprints and were separated from cultivated subspecies. Principal component analysis showed closer relationship between ssp. unguiculata and ssp. cylindrica compared to ssp. sesquipedalis. Relative differentiation of cultivated subspecies (with Fixation Index, FST) indicated the existence of discrete signatures of selection. This work clarifies the population structure, phylogeny, and domestication of cultivated cowpeas. Furthermore, significant genetic differences between grain and pod vegetable types can provide valuable information for future breeding in three cowpea groups. 2023-12-07T16:40:10Z 2023-12-07T16:40:10Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://doi.org/10.1186/s43897-022-00028-x 2730-9401 http://hdl.handle.net/20.500.12324/38667 https://doi.org/10.1186/s43897-022-00028-x reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Molecular Horticulture 2 2 1 8 Andargie M, Knudsen JT, Pasquet RS, Gowda BS, Muluvi GM, Timko MP. Mapping of quantitative trait loci for floral scent compounds in cowpea (Vigna unguiculata L.). Plant Breed. 2014;33(1):92–100. https://doi.org/10.1111/ pbr.12112. Andargie M, Pasquet RS, Gowda BS, Muluvi GM, Timko MP. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breeding. 2011;28:413–20. Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, et al. Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 2019; 138(4):415–24. https://doi.org/10.1111/pbr.12589. Chen H, Chen H, Hu L, Wang L, Wang S, Wang ML, et al. Genetic diversity and a population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection. Crop J. 2017;5(5):363–72. https://doi.org/10.1016/j.cj.2017.04.002. Cortés AJ, Blair MW. Genotyping by Sequencing and Genome – Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. Front Plant Sci. 2018;9:128. https://doi.org/10.3389/ fpls.2018.00128. Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting thermal adaptation by looking into populations’ genomic past. Front Genet. 2020;11. https://doi. org/10.3389/fgene.2020.564515 Cortés AJ, Skeen P, Blair MW, Chacón-Sánchez MI. Does the genomic landscape of species divergence in Phaseolus beans coerce parallel signatures of adaptation and domestication? Front Plant Sci. 2018;9:1816. https://doi.org/1 0.3389/fpls.2018.01816. Coulibaly S, Pasquet R, Papa R, Gepts P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp reveals extensive gene flow between wild and domesticated types. Theor Appl Genet. 2002;104(2-3):358–66. D’Auria JC. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol. 2006;9(3):331–40. https://doi.org/10.1016/j.pbi.2006.03.016. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. https:// doi.org/10.1093/bioinformatics/btr330. Desalegne BA, Mohammed S, Dagne K, Timko MP. Assessment of genetic diversity in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] germplasm using simple sequence repeat markers. Plant Mol. Biol. Rep. 2016;34:978–92. Ehlers J, Hall A. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 1997;53(1-3): 187–204. https://doi.org/10.1016/S0378-4290(97)00031-2. Ellegren H, Wolf JB. Parallelism in genomic landscapes of differentiation, conserved genomic features and the role of linked selection. J Evol Biol. 2017;30(8):1516–8. https://doi.org/10.1111/jeb.13113 Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. https://doi.org/10.1371/journal.pone.0019379. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8): 2611–20. https://doi.org/10.1111/j.1365-294X.2005.02553.x Fang J, Chao CCT, Roberts PA, Ehlers JD. Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol. 2007;54:1197–209 Fatokun C, Girma G, Abberton M, Gedil M, Unachukwu N, Oyatomi O, et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep. 2018;8:1–10 Gillaspie A, Hopkins M, Dean R. Determining genetic diversity between lines of Vigna unguiculata subspecies by AFLP and SSR markers. Resour Crop Evol. 2005;52(3):245–7. https://doi.org/10.1007/s10722-004-6693-9 Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014; 9(2):e90346. https://doi.org/10.1371/journal.pone.0090346. Hall AE, Cisse N, Thiaw S, Elawad HO, Ehlers JD, Ismail AM, et al. Development of cowpea cultivars and germplasm by the bean/cowpea CRSP. Field Crops Res. 2003;82(2-3):103–34. https://doi.org/10.1016/S0378-4290(03)00033-9 He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484. https://doi.org/10.3389/fpls.2014.00484. Herniter IA, Lo R, Muñoz-Amatriaín M, Lo S, Guo YN, Huynh BL, et al. Seed coat pattern QTL and development in cowpea (Vigna unguiculata [L.] Walp.). Front Plant Sci. 2019;10:1346 Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Notes. 2009;9(5):1322–32. https://doi.org/10.1111/j.1755-0998.2009.02591.x. Huynh BL, Close TJ, Roberts PA, Hu Z, Wanamaker S, Lucas MR, et al. Gene pools and the genetic architecture of domesticated cowpea. Plant Genome. 2013; 6(3). https://doi.org/10.3835/plantgenome2013.03.0005 Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL. Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Eco. 2016;25(18):4488–507. https://doi.org/10.1111/mec.13792 Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA. The genetics of domestication of rice bean, Vigna umbellata. Ann Bot. 2010;106(6):927–44. https://doi.org/10.1093/aob/mcq188. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, et al. An SSRbased linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome. 2012;55:81–92 Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5):1179–91. https:// doi.org/10.1111/1755-0998.12387. Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, et al. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Phy. 2002;130(3): 1132–42. https://doi.org/10.1104/pp.009415. Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ. Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci. 2001;41(1):189–97. https://doi.org/10.2135/ cropsci2001.411189x Lo S, Fatokun C, Boukar O, Gepts P, Close TJ, Muñoz-Amatriaín M. Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculata [L.] Walp.). PLoS One. 2020;15(4):e0229167. https://doi.org/10.1371/journal.pone. 0229167 Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, et al. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep. 2018;8:1–9. Lonardi S, Munoz-Amatriain M, Liang Q, Shu S, Wanamaker SI, et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019;98(5):767–82. https:// doi.org/10.1111/tpj.14349 Lush W, Evans L. The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.). Euphytica. 1981;30(3):579–87. https://doi.org/10.1007/ BF00038783. Lush W, Evans L, Wien H. Environmental adaptation of wild and domesticated cowpeas (Vigna unguiculata (L.) Walp.). Field Crops Res. 1980;3:173–87. Malviya N, Sarangi B, Yadav MK, Yadav D. Analysis of genetic diversity in cowpea (Vigna unguiculata L. Walp.) cultivars with random amplified polymorphic DNA markers. Plant Syst Evol. 2012;298(2):523–6. https://doi.org/10.1007/ s00606-011-0545-9. Munoz-Amatriain M, Lo S, Herniter IA, Boukar O, Fatokun C, Carvalho M, et al. The UCR Minicore: a valuable resource for cowpea research and breeding. Legume Sci. 2021;3:e95 Munoz-Amatriain M, Lo S, Herniter IA, Boukar O, Fatokun C, Carvalho M, et al. The UCR Minicore: a valuable resource for cowpea research and breeding. Legume Sci. 2021;3:e95 Ng N, Marechal R. Cowpea taxonomy, origin and germplasm. In Cowpea research, production and utilization. 1985;pp.11–21 Olasupo FO, Ilori CO, Stanley EA, Owoeye TE, Igwe DO. Genetic Analysis of Selected Mutants of Cowpea (Vigna unguiculata [L.] Walp) Using Simple Sequence Repeat and RCBL Markers. Am J Plant Sci. 2018;9:2728. Parker TA, Lo S, Gepts P. Pod Shattering in Grain Legumes: Emerging Genetic and Environment-Related Patterns. Plant Cell. 2021;33:179–99. https://doi. org/10.1093/plcell/koaa025. Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5:92–102 Ravelombola W, Shi A, Weng Y, Mou B, Motes D, Clark J, et al. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theor Appl Genet. 2018;131:79–91. Rawal KM. Natural hybridization among wild, weedy and cultivated Vigna unguiculata (L.) Walp. Euphytica. 1975;24:699–707 Reis C, Frederico A. Genetic diversity in cowpea (Vigna unguiculata) using isozyme electrophoresis. In International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture, 2000; pp. 497–501. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4(1):137–8. https://doi.org/10.1046/j.1471-82 86.2003.00566.x. Sahay G, Shukla P. Cytological investigations of Cowpea (Vigna unguiculata (L.) Walp) and Sem (Lablab purpureus (L.) Sweet) two major fodder legumes. In The 23rd International Gr d International Grassland Congr assland Congress, D.R.M. M. M. Roy, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna ed (New Delhi, India: Range Management Society of India). 2020 Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85. https://doi. org/10.1038/nrg2361. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell. 2009;21(2):581–94. https://doi.org/1 0.1105/tpc.108.060145. Singh BB, Ehlers J, Sharma B, Freire Filho F. Recent progress in cowpea breeding. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production. 2002; pp. 22. Sprent JI, Odee DW, Dakora FD. African legumes: a vital but under-utilized resource. J Exp Bot. 2010;61(5):1257–65. https://doi.org/10.1093/jxb/erp342 Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84. https:// doi.org/10.1038/s41576-019-0127-1. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9 Verdcourt B. Studies in the Leguminosae-Papilionoïdeae for the'Flora of tropical East Africa': III. In Kew Bulletin. 1970;2970:379–447. Weir BS, Cockerham C. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38(6):1358–70. https://doi.org/10.2307/2408641 Whit WC. Soul food as cultural creation. In: Bower AL, editor. In African American foodways: Explorations of history and culture. Champaign: University of Illinois Press; 2007. p. 45–58. Wolf JB, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18(2):87–100. https://doi.org/10.1038/nrg.201 6.133. Xiong H, Shi A, Mou B, Qin J, Motes D, Lu W, et al. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One. 2016; 11(8):e0160941. https://doi.org/10.1371/journal.pone.0160941 Xu P, Wu X, Munoz-Amatriain M, Wang B, Wu X, Hu Y, et al. Genomic regions, cellular components and gene regulatory basis underlying pod length Wu et al. Molecular Horticulture (2022) 2:8 Page 14 of 15 variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol J. 2017;15: 547–57 Xu P, Wu X, Wang B, Liu Y, Ehlers JD, Close TJ, et al. A SNP and SSR based genetic map of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One. 2011;6:e15952 Yadav T, Chopra NK, Chopra N, Kumar R, Soni P. Assessment of critical period of crop-weed competition in forage cowpea (Vigna unguiculata) and its effect on seed yield and quality. India J Agron. 2018;63:124–7. Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, et al. The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol. 2008;148(3):1189–200. https://doi.org/10.1104/ pp.108.121921. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf Caldas Estados Unidos Universidad de Nashville Nashville, (Estados Unidos) Molecular Horticulture; Vol. 2, Núm. 2 (2022): Molecular Horticulture;p. 1-8. |