Summary: | Se desarrolló un sistema de visión artificial para la clasificación de frutos de café en once categorías dependiendo de su estado de madurez. Para la descripción de la forma, el color y la textura de cada fruto de café se extrajeron 208 características. La reducción del conjunto de características de 208 a 9 se hizo con base en los resultados de dos métodos de selección de características, uno univariado y otro multivariado. Las características seleccionadas corresponden a 4 características de textura, 3 de color y 2 de forma. Este conjunto final de características se evaluó en dos técnicas de clasificación: Bayesiano y redes neuronales. Con el clasificador Bayesiano se obtuvo un error de clasificación del 5,43% y requirió un tiempo de clasificación de 5,5 ms, mientras que usando redes neuronales el error de clasificación fue de 7,46%, pero disminuyó el tiempo de clasificación a 0,8 ms.
|