Las ómicas en el control biológico
En los últimos años los avances tecnológicos han posibilitado explorar la naturaleza como nunca y, en consecuencia, posicionar la biología como una ciencia de la información. Entre estas nuevas aproximaciones metodológicas de las ciencias de la vida se destacan las disciplinas ómicas, cuyo objeto de...
Autores principales: | , , , , , |
---|---|
Formato: | book part |
Lenguaje: | Español |
Publicado: |
Corporación colombiana de investigación agropecuaria - AGROSAVIA
2018
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12324/34160 |
id |
RepoAGROSAVIA34160 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Español |
topic |
Plagas de las plantas - H10 Genómica Control biológico Transversal |
spellingShingle |
Plagas de las plantas - H10 Genómica Control biológico Transversal Barrera, Gloria Patricia Ghiringhelli, Pablo Daniel Lewis Mosher, Stephen Caro Quintero, Alejandro Massart, Sebastien Belaich, Mariano Nicolás Las ómicas en el control biológico |
description |
En los últimos años los avances tecnológicos han posibilitado explorar la naturaleza como nunca y, en consecuencia, posicionar la biología como una ciencia de la información. Entre estas nuevas aproximaciones metodológicas de las ciencias de la vida se destacan las disciplinas ómicas, cuyo objeto de estudio son conjuntos biomoleculares particulares (adn, arn, proteínas o metabolitos secundarios) analizados mediante procedimientos de alto rendimiento. En este sentido, la genómica (con sus derivados: pangenómica y metagenómica), la transcriptómica, la proteómica y la metabolómica —entre otras disciplinas ómicas— conforman líneas de estudio imprescindibles para describir la naturaleza y potenciar la producción de bienes y servicios biotecnológicos. En este capítulo se hace una recopilación de los procedimientos empleados para hacer estudios ómicos y se resalta su utilidad en la investigación y el desarrollo de agentes de control biológico para invertebrados plaga y fitopatógenos. Se reseña, en consecuencia, la importancia del conocimiento genómico, transcriptómico, proteómico y metabolómico para la comprensión de las características moleculares de hongos, bacterias y virus utilizados en el control biológico. Además, se aporta información sobre el funcionamiento de las relaciones multipartitas para la implementación de la agricultura como un sistema productivo sostenible, amigable con el ambiente y resiliente. |
format |
book part |
author |
Barrera, Gloria Patricia Ghiringhelli, Pablo Daniel Lewis Mosher, Stephen Caro Quintero, Alejandro Massart, Sebastien Belaich, Mariano Nicolás |
author_facet |
Barrera, Gloria Patricia Ghiringhelli, Pablo Daniel Lewis Mosher, Stephen Caro Quintero, Alejandro Massart, Sebastien Belaich, Mariano Nicolás |
author_sort |
Barrera, Gloria Patricia |
title |
Las ómicas en el control biológico |
title_short |
Las ómicas en el control biológico |
title_full |
Las ómicas en el control biológico |
title_fullStr |
Las ómicas en el control biológico |
title_full_unstemmed |
Las ómicas en el control biológico |
title_sort |
las ómicas en el control biológico |
publisher |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
publishDate |
2018 |
url |
http://hdl.handle.net/20.500.12324/34160 |
work_keys_str_mv |
AT barreragloriapatricia lasomicasenelcontrolbiologico AT ghiringhellipablodaniel lasomicasenelcontrolbiologico AT lewismosherstephen lasomicasenelcontrolbiologico AT caroquinteroalejandro lasomicasenelcontrolbiologico AT massartsebastien lasomicasenelcontrolbiologico AT belaichmarianonicolas lasomicasenelcontrolbiologico AT barreragloriapatricia omicsinbiologicalcontrol AT ghiringhellipablodaniel omicsinbiologicalcontrol AT lewismosherstephen omicsinbiologicalcontrol AT caroquinteroalejandro omicsinbiologicalcontrol AT massartsebastien omicsinbiologicalcontrol AT belaichmarianonicolas omicsinbiologicalcontrol |
_version_ |
1808104650754228224 |
spelling |
RepoAGROSAVIA341602024-06-14T20:32:59Z Las ómicas en el control biológico Omics in biological control Barrera, Gloria Patricia Ghiringhelli, Pablo Daniel Lewis Mosher, Stephen Caro Quintero, Alejandro Massart, Sebastien Belaich, Mariano Nicolás Plagas de las plantas - H10 Genómica Control biológico Transversal En los últimos años los avances tecnológicos han posibilitado explorar la naturaleza como nunca y, en consecuencia, posicionar la biología como una ciencia de la información. Entre estas nuevas aproximaciones metodológicas de las ciencias de la vida se destacan las disciplinas ómicas, cuyo objeto de estudio son conjuntos biomoleculares particulares (adn, arn, proteínas o metabolitos secundarios) analizados mediante procedimientos de alto rendimiento. En este sentido, la genómica (con sus derivados: pangenómica y metagenómica), la transcriptómica, la proteómica y la metabolómica —entre otras disciplinas ómicas— conforman líneas de estudio imprescindibles para describir la naturaleza y potenciar la producción de bienes y servicios biotecnológicos. En este capítulo se hace una recopilación de los procedimientos empleados para hacer estudios ómicos y se resalta su utilidad en la investigación y el desarrollo de agentes de control biológico para invertebrados plaga y fitopatógenos. Se reseña, en consecuencia, la importancia del conocimiento genómico, transcriptómico, proteómico y metabolómico para la comprensión de las características moleculares de hongos, bacterias y virus utilizados en el control biológico. Además, se aporta información sobre el funcionamiento de las relaciones multipartitas para la implementación de la agricultura como un sistema productivo sostenible, amigable con el ambiente y resiliente. 2018-12-05T16:58:05Z 2018-12-05T16:58:05Z 2018 book part Capítulo http://purl.org/coar/resource_type/c_3248 info:eu-repo/semantics/bookPart https://purl.org/redcol/resource_type/CAP_LIB http://purl.org/coar/version/c_970fb48d4fbd8a85 978-958-740-254-4 (e-book) http://hdl.handle.net/20.500.12324/34160 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa 950 987 Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., ... Galle, R. F. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195. doi:10.1126/science. 287.5461.2185. Aguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125-132. Ambardar, S., Gupta, R., Trakroo, D., Lal, R., & Vakhlu, J. (2016). High throughput sequencing: An overview of sequencing chemistry. Indian Journal of Microbiology, 56(4), 394-404. doi:10.1007/s12088-016-0606-4. Anderson, J. P., Gleason, C. A., Foley, R. C., Thrall, P. H., Burdon, J. B., & Singh, K. B. (2010). Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 37(6), 499-512. doi:10.1071/FP09304. Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. doi:10.1038/35048692. Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198(1), 264-273. doi:10.1111/nph.12124. Barah, P., & Bones, A. M. (2014). Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. Journal of Experimental Botany, 66, 479-493. doi:10.1093/jxb/ eru489. Barrera, G. P., Belaich, M. N., Patarroyo, M. A., Villamizar, L. F., & Ghiringhelli, P. D. (2015). Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda. BMC Genomics, 16, 1008. doi:10.1186/s12864-015-2218-5. Beck, J. J., Smith, L., & Baig, N. (2014). An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochemical Analysis, 25(4), 331-341. doi:10.1002/pca.2486. Bentley, D. R. (2006). Whole-genome re-sequencing. Current Opinion in Genetics and Development, 16(6), 545-552. doi:10.1016/j.gde.2006.10.009. Bizzini, A., & Greub, G. (2010). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clinical Microbiology and Infection, 16(11), 1614-1619. doi:10.1111/j.1469-0691.2010.03311.x. Borgi, I., Dupuy, J. W., Blibech, I., Lapaillerie, D., Lomenech, A. M., Rebai, A., ... Gargouri, A. (2016). Hyper-proteolytic mutant of Beauveria bassiana, a new biological control agent against the tomato borer. Agronomy for Sustainable Development, 36, 60. doi:10.1007/s13593-016-0394-6. Borgi, I., Dupuy, J. W., Blibech, I., Lapaillerie, D., Lomenech, A. M., Rebai, A., ... Gargouri, A. (2016). Hyper-proteolytic mutant of Beauveria bassiana, a new biological control agent against the tomato borer. Agronomy for Sustainable Development, 36, 60. doi:10.1007/s13593-016-0394-6. Brun, S., Madrid, H., Gerrits Van Den Ende, B., Andersen, B., Marinach-Patrice, C., Mazier, D., & De Hoog, G. S. (2013). Multilocus phylogeny and maldi-tof analysis of the plant pathogenic species Alternaria dauci and relatives. Fungal biology, 117(1), 32-40. doi:10.1016/j. funbio.2012.11.003. Calvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & De Tosetti, M. I. S. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251- 257. doi:10.1016/j.ijfoodmicro.2006.07.003. Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., ... Krummenacker, M. (2009). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, 40(Database issue), D742-D753. doi:10.1093/nar/gkr1014. Chang, H.-X., Lipka, A. E., Domier, L. L., & Hartman, G. L. (2016). Characterization of disease resistance loci in the USDA Soybean Germplasm Collection using Genome wide association studies. Phytopathology, 106(10), 1139- 1151. doi:10.1094/PHYTO-01-16-0042-FI. wide association studies. Phytopathology, 106(10), 1139- 1151. doi:10.1094/PHYTO-01-16-0042-FI. Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S., & Buchwalter, D. B. (2017). Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. Journal of Insect Physiology, 101, 107-112. doi:10.1016/j. jinsphys.2017.07.008. Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S., & Buchwalter, D. B. (2017). Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. Journal of Insect Physiology, 101, 107-112. doi:10.1016/j. jinsphys.2017.07.008. Conesa, A., Madrigal, P., Tarazona, S., Gómez-Cabrero, D., Cervera, A., McPherson, A., ... Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17, 13-19. doi:10.1186/s13059-016- 0881-8. Covington, B. C., McLean, J. A., & Bachmann, B. O. (2016). Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Natural Product Reports, 34(1), 1-19. doi:10.1039/C6NP00048G. Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561-563. Crovadore, J., Xu, S., Chablais, R., Cochard, B., Lukito, D., Calmin, G., & Lefort, F. (2017). Metagenome-Assembled Genome Sequence of Rhodopseudomonas palustris Strain ELI 1980, Commercialized as a Biostimulant. Genome Announcements, 5(18), 1-3. doi:10.1017/ CBO9781107415324.004. Cuartas, P. E., Barrera, G. P., Belaich, M. N., Barreto, E., Ghiringhelli, P. D., & Villamizar, L. F. (2015). The complete sequence of the first Spodoptera frugiperda betabaculovirus genome: a natural multiple recombinant virus. Viruses, 7(1), 394-421. doi:10.3390/v7010394. Douglas, C. J., & Ehlting, J. (2005). Arabidopsis thaliana full genome longmer microarrays: A powerful gene discovery tool for agriculture and forestry. Transgenic Research, 14(5), 551-561. doi:10.1007/s11248-005-8926-x. Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L., Fernando, W. G. D., Belmonte, M. F., & De Kievit, T. R. (2017). The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. bmc Genomics, 18, 1-16. doi:10.1186/ s12864-017-3848-6. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., ... Turner, S. (2009). Single polymerase molecules. Science, 323(5910), 133-138. doi:10.1126/science.1162986. Evans, A., Forde, N., O'Gorman, G., Zielak, A., Lonergan, P., & Fair, T. (2008). Use of microarray technology to profile gene expression patterns important for reproduction in cattle. Reproduction in Domestic Animals, 43(s2), 359-367. doi:10.1111/j.1439-0531.2008.01185.x. Fabres, P. J., Collins, C., Cavagnaro, T. R., & Rodríguez López, C. M. (2017). A concise review on Multi-Omics data integration for terroir analysis in Vitis vinifera. Frontiers in Plant Science, 8, 1065. doi:10.3389/fpls.2017.01065. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., ... Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496- 512. doi:10.1126/science.7542800. Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., ... Wang, C. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7(1), e1001264. doi:10.1371/journal.pgen.1001264. Glenn, T. C. (2011). Field guide to next-generation dna sequencers. Molecular Ecology Resources, 11(5), 759-769. doi:10.1111/j.1755-0998.2011.03024.x. Gogna, N., Singh, V. J., Sheeba, V., & Dorai, K. (2015). nmr - based investigation of the Drosophila melanogaster metabolome under the influence of daily cycles of light and temperature. Molecular BioSystems, 11(12), 3305- 3315. doi:10.1039/c5mb00386e Greenbaum, D., Luscombe, N. M., Jansen, R., Qian, J., & Gerstein, M. (2001). Interrelating different types of genomic data, from proteome to secretome:'oming in on function. Genome Research, 11(9), 1463-1468. doi:10.1101/gr.207401.necessary. Harris, T. D., Buzby, P. R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., ... Xie, Z. (2008). Single-molecule dna sequencing of a viral genome. Science, 320(5872), 106- 109. doi:10.1126/science.1150427. Hasin, Y., Seldin, M., Lusis, A., Guo, W., Go, J., Shi, H., ... Landray, M. (2017). Multi-omics approaches to disease. Genome Biology, 18, 83. doi:10.1186/s13059-017-1215-1. Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(Pt1), 17-25. doi:10.1099/ mic.0.052274-0. Hinrichs, J. W. J., Van Blokland, W. T. M., Moons, M. J., Radersma, R. D., Van Loon, J. H. R., De Voijs, C. M. A., ... De Weger, R. A. (2015). Comparison of nextgeneration sequencing and mutation-specific platforms in clinical practice. American Journal of Clinical Pathology, 143(4), 573-578. doi:10.1309/AJCP40XETVYAMJPY. Howell, C. R., & Stipanovic, R. D. (1979). Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480-482. Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology, 70, 712-715 Hsu, J. C., Chien, T. Y., Hu, C. C., Chen, M. J. M., Wu, W. J., Feng, H. T., ... Chen, C. Y. (2012). Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a De novo assembled transcriptome. PLoS One, 7(8), doi:10.1371/journal. pone.0040950 Hu, X., Qin, L., Roberts, D. P., Lakshman, D. K., Gong, Y., Maul, J. E., ... Liao, X. (2017). Characterization of mechanisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach. bmc Genomics, 18(1), 674. doi:10.1186/s12864-017- 4016-8. Ianiri, G., Idnurm, A., & Castoria, R. (2016). Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. bmc Genomics, 17, 210. doi:10.1186/s12864-016-2550-4. Kang, D., Kim, J., Choi, J. N., Liu, K.-H., & Lee, C. H. (2011). Chemotaxonomy of Trichoderma spp. using mass spectrometry-based metabolite profiling. Journal of Microbiology and Biotechnology, 21(1), 5-13. Kazemi-Pour, N., Condemine, G., & Hugouvieux-CottePattat, N. (2004). The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics, 4(10), 3177- 3186. doi:10.1002/pmic.200300814. Konstantinidis, K. T., & Tiedje, J. M. (2005). Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2567- 2572. doi:10.1073/pnas.0409727102. Kraus, J., & Loper, J. E. (1995). Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 61(3), 849-854. Lande, N. V., Subba, P., Barua, P., Gayen, D., Keshava Prasad, T. S., Chakraborty, S., & Chakraborty, N. (2017). Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions. Journal of Proteomics, 165, 11-20. doi:10.1016/j.jprot.2017.06.005. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., ... FitzHugh, W. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860-921 doi:10.1038/35057062 Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., ... Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012, 11. doi:10.1155/2012/251364. Liu, Y., & Li, X. (2015). Darwin and Mendel today: a comment on “Limits of imagination: the 150th Anniversary of Mendel’s Laws, and why Mendel failed to see the importance of his discovery for Darwin’s theory of evolution”. Genome, 59(1), 75-77. doi:10.1139/gen-2015- 0155 Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009-114314. Mahunu, G. K., Zhang, H., Yang, Q., Li, C., & Zheng, X. (2016). Biological control of patulin by antagonistic yeast: A case study and possible model. Critical Reviews in Microbiology, 42(4), 643-655. doi:10.3109/104084 1X.2015.1009823. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., ... Rothberg, J. M. (2006). Genome sequencing in open microfabricated high density picoliter reactors. Nature, 437(7057), 376-380. doi:10.1038/ nature03959. Marzancola, M. G., Sedighi, A., & Li, P. C. H. (2016). DNA Microarray-Based Diagnostics. En P. C. H. Li, A. Sedighi, & L. Wang, (EDS.), Microarray Technology: Methods and Applications (pp. 161-178). Nueva York, EE. UU.: Springer Massart, S., Perazzolli, M., Höfte, M., Pertot, I., & Jijakli, M. H. (2015). Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. BioControl, 60(6), 725- 746. doi:10.1007/s10526-015-9686-z. Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V., & Vannacci, G. (2012). Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology, 158(Pt1), 98-106. doi:10.1099/ mic.0.052639-0. Matskevich, A. A., Quintin, J., & Ferrandon, D. (2011). Pathway Activation Function. European Journal of Immunology, 40(5), 1244-1254. doi:10.1002/ eji.200940164. McKernan, K. J., Peckham, H. E., Costa, G., McLaughlin, S., Tsung, E., Fu, Y., ... Blanchard, A. P. (2009). Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation. Genome Research, 19(9), 1527-1541. doi:10.1101/gr.091868.109. Mgbeahuruike, A. C., Kohler, A., & Asiegbu, F. O. (2013). Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea on the conifer pathogen, Heterobasidion annosum ss transcriptome. Microbial Ecology, 66(3), 669-681. doi:10.1007/s00248- 013-0255-7. Miller, H. I. (2017). Genetic engineering applied to agriculture has a long row to hoe. gm Crops & Food, 0, 1-4. doi:10.10 80/21645698.2017.1378840. Mitter, E. K., De Freitas, J. R., & Germida, J. J. (2017). Bacterial root microbiome of plants growing in oil sands reclamation covers. Frontiers in Microbiology, 8, 849. doi:10.3389/fmicb.2017.00849. Moake, M. M., Padilla-Zakour, O. I., & Worobo, R. W. (2005). Comprehensive review of patulin control methods in foods. Comprehensive Reviews in Food Science and Food Safety, 4(1), 8-21. doi:10.1111/j.1541-4337.2005. tb00068.x. Moraes, F., & Góes, A. (2016). A decade of human genome project conclusion: Scientific diffusion about our genome knowledge. Biochemistry and Molecular Biology Education, 44(3), 215-223. doi:10.1002/bmb.20952. Moshelion, M., & Altman, A. (2015). Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology, 33(6), 337-342. doi:10.1016/j.tibtech.2015.03.001. Najafabadi, A. S., Naghavi, M. R., Farahmand, H., & Abbasi, A. (2017). Transcriptome and metabolome analysis of Ferula gummosa Boiss. to reveal major biosynthetic pathways of galbanum compounds. Functional & Integrative Genomics, 17(6), 1-13. doi:10.1007/s10142- 017-0567-7. Nawaz, M. A., Rehman, H. M., Baloch, F. S., Ijaz, B., Ali, M. A., Khan, I. A., ... Yang, S. H. (2017). Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean. Journal of Plant Physiology, 215, 163-175. doi:10.1016/j.jplph.2017.04.009. Newman, M. M., Lorenz, N., Hoilett, N., Lee, N. R., Dick, R. P., Liles, M. R., ... Kloepper, J. W. (2016). Changes in rhizosphere bacterial gene expression following glyphosate treatment. The Science of the Total Environment, 553, 32- 41. doi:10.1016/j.scitotenv.2016.02.078. Oshlack, A., Robinson, M. D., & Young, M. D. (2010). From RNA-seq reads to differential expression results. Genome Biology, 11, 220. doi:10.1186/gb-2010-11-12-220. Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi, D. V., ... Madupu, R. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23(7), 873. doi:10.1038/nbt1110. Puel, O., Galtier, P., & Oswald, I. P. (2010). Biosynthesis and toxicological effects of patulin. Toxins, 2(4), 613-631. doi:10.3390/toxins2040613. Qu, M., An, B., Shen, S., Zhang, M., Shen, X., Duan, X., ... Qu, J. (2016). Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrometry Reviews, 36(6), 734-754. doi:10.1002/MAS.21500. Rodríguez-Llorente, I., Caviedes, M. A., Dary, M., Palomares, A. J., Cánovas, F. M., & Peregrín-Álvarez, J. M. (2009). The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti. BMC Systems Biology, 3, 63. doi:10.1186/1752-0509-3-63. Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., ... Bustillo, J. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348-352. doi:10.1038/ nature10242. Rozado-Aguirre, Z., Adams, I., Fox, A., Dickinson, M., & Boonham, N. (2017). Complete sequence and genomic annotation of carrot torradovirus 1. Archives of Virology, 162(9), 2815-2819. doi:10.1007/s00705-017-3410-5. Ryder, L. S., Harris, B. D., Soanes, D. M., Kershaw, M. J., Talbot, N. J., & Thornton, C. R. (2012). Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology, 158(Pt 1), 84-97. doi:10.1099/mic.0.051854-0. Sanger, F., Coulson, A., Friedmann, T., Air, G., Barrell, B., Brown, N., ... Smith, M. (1977a). The nucleotide sequence of bacteriophage φX174DNA. Nature, 265, 687-695. doi:10.1038/265687a0. Sanger, F., Nicklen, S., & Coulson, A. R. (1977b). DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences of the United States of America, 74(12), 5463-5467. doi:10.1073/ pnas.74.12.5463. Shaw, S., Le Cocq, K., Paszkiewicz, K., Moore, K., Winsbury, R., De Torres Zabala, M., ... Grant, M. R. (2016). Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Molecular Plant Pathology, 17(9), 1425-1441. doi:10.1111/mpp.12429. Shikano, I. (2017). Evolutionary ecology of multitrophic interactions between plants, insect herbivores and entomopathogens. Journal of Chemical Ecology, 43(6), 1-13. doi:10.1007/s10886-017-0850-z. Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology, 47, 39-49. doi:10.1016/j.tifs.2015.11.003. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G., & Bayley, H. (2009). Single-nucleotide discrimination in immobilized dna oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences of the United States of America, 106(19), 7702-7707. doi:10.1073/pnas.0901054106. Tan, B. C., Lim, Y. S., & Lau, S.-E. (2017). Proteomics in commercial crops: An overview. Journal of Proteomics, 169, 30185-30189. doi:10.1016/j.jprot.2017.05.018. Thao, N. P., & Tran, L.-S. (2016). Enhancement of plant productivity in the post-genomics era.Current Genomics, 17(4), 295-296. doi:10.2174/138920291704160607182507. The C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282(5396), 2012-2018. doi:10.1126/science.282.5396.2012. Tyczewska, A., Gracz, J., Kuczyński, J., & Twardowski, T. (2016). Deciphering the soybean molecular stress response via high- throughput approaches. Acta Biochimica Polonica, 63(4), 631-643. doi:10.18388/abp.2016_1340. Udaondo, Z., Duque, E., & Ramos, J.-L. (2017). The pangenome of the genus Clostridium. Environmental Microbiology, 19(7), 2588-2603. doi:10.1111/1462- 2920.13732. Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 63(1), 1-21. doi:10.1007/ s10526-017-9801-4. Vidova, V., & Spacil, Z. (2017). A review on mass spectrometry-based quantitative proteomics: Targeted d data independent acquisition. Analytica Chimica Acta, 964, 7-23. doi:10.1016/j.aca.2017.01.059. Vinale, F., Manganiello, G., Nigro, M., Mazzei, P., Piccolo, A., Pascale, A., ... Lanzuise, S. (2014). A novel fungal metabolite with beneficial properties for agricultural applications. Molecules, 19(7), 9760-9772. doi:10.3390/ molecules19079760. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., ... Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72(1-3), 80-86. doi:10.1016/j.pmpp.2008.05.005. Wang, Y., Yang, P., Cui, F., & Kang, L. (2013). Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathogens, 9(1), e1003102. doi:10.1371/journal.ppat.1003102. Wei, N., Bemmels, J. B., & Dick, C. W. (2014). The effects of read length, quality and quantity on microsatellite discovery and primer development: From Illumina to PacBio. Molecular Ecology Resources, 14(5), 953-965. doi:10.1111/1755-0998.12245. Wilson, K., Thomas, M. B., Blanford, S., Doggett, M., Simpson, S. J., & Moore, S. L. (2002). Coping with crowds: density-dependent disease resistance in desert locusts. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5471-5475. doi:10.1073/pnas.082461999. Williams, H. L., Monge-Monge, K. S., Otvos, I. S., Reardon, R., & Ragenovich, I. (2011). Genotypic variation among Douglas-fir tussock moth nucleopolyhedrovirus (OpNPV) isolates in the western United States. Journal of Invertebrate Pathology, 108(1), 13-21. doi:10.1016/j. jip.2011.06.004. Wu, J., Cai, G., Tu, J., Li, L., Liu, S., Luo, X., ... Zhou, Y. (2013). Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One, 8(7), e67740. doi:10.1371/journal. pone.0067740. Xie, W., Chen, C., Yang, Z., Guo, L., Yang, X., Wang, D., ... Zhang, Y. (2017). Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. GigaScience, 6(5), 1-7. doi:10.1093/gigascience/gix018. Yugi, K., Kubota, H., Hatano, A., & Kuroda, S. (2016). Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’layers. Trends in Biotechnology, 34(4), 276-290. doi:10.1016/j.tibtech.2015.12.013. Zebelo, S. A., Matsui, K., Ozawa, R., & Maffei, M. E. (2012). Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Science, 196, 93-100. doi:10.1016/j.plantsci. 2012.08.006. Zhang, H., Chen, L., Sun, Y., Zhao, L., Zheng, X., & Yang, Q. (2017). Investigating proteome and transcriptome defense response of apples induced by Yarrowia lipolytica. Molecular Plant-Microbe Interactions Journal, 30(4), 301- 311. doi:10.1094/MPMI-09-16-0189-R. Zhao, L., Huang, Y., Adeleye, A. S., & Keller, A. A. (2017). Metabolomics reveals Cu(OH)2 nanopesticide activated antioxidative pathways and decreased beneficial antioxidants in spinach leaves. Environmental Science and Technology, 51(17), 10184-10194. doi:10.1021/acs. est.7b02163. 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess application/pdf application/pdf Colombia Corporación colombiana de investigación agropecuaria - AGROSAVIA Bogotá (Colombia) |