Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR

Quality of persimmon cv 'Rojo Brillante' fruits can be affected by changes in texture during postharvest storage if storage conditions are not appropriate, which can impact consumer acceptance. Therefore, developing accurate tools to predict texture before marketing is of great interest. Hyperspe...

Full description

Bibliographic Details
Main Authors: Castillo-Gironés, Salvador, González-Muelas, Ángel, Cubero, Sergio, Rodríguez, Alejandro, Munera, Sandra, Salvador, Alejandra, Guirao, Alberto, Gómez-Sanchis, Juan, Blasco, José
Format: Objeto de conferencia
Language:Español
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/20.500.11939/8879
_version_ 1855492578003124224
author Castillo-Gironés, Salvador
González-Muelas, Ángel
Cubero, Sergio
Rodríguez, Alejandro
Munera, Sandra
Salvador, Alejandra
Guirao, Alberto
Gómez-Sanchis, Juan
Blasco, José
author_browse Blasco, José
Castillo-Gironés, Salvador
Cubero, Sergio
González-Muelas, Ángel
Guirao, Alberto
Gómez-Sanchis, Juan
Munera, Sandra
Rodríguez, Alejandro
Salvador, Alejandra
author_facet Castillo-Gironés, Salvador
González-Muelas, Ángel
Cubero, Sergio
Rodríguez, Alejandro
Munera, Sandra
Salvador, Alejandra
Guirao, Alberto
Gómez-Sanchis, Juan
Blasco, José
author_sort Castillo-Gironés, Salvador
collection ReDivia
description Quality of persimmon cv 'Rojo Brillante' fruits can be affected by changes in texture during postharvest storage if storage conditions are not appropriate, which can impact consumer acceptance. Therefore, developing accurate tools to predict texture before marketing is of great interest. Hyperspectral imaging is a non-destructive technology that has been proven effective for predicting internal attributes. This study aimed to evaluate the usefulness of hyperspectral images for predicting flesh firmness. A total of 3,340 persimmons were stored for three months under different temperature conditions (0°C, 1°C, and 5°C) to induce varying changes in flesh texture. Hyperspectral images were acquired at harvest and every month for each storage condition. Flesh firmness was measured using a texturometer immediately after image acquisition. Samples were clustered into three groups using k-Means based on their firmness data and mean spectra was extracted from each persimmon. Samples were randomly divided into training (70%) and test (30%) sets. Besides, wavelength reduction was performed using Partial Least Squares Discriminant Analysis (PLS) coefficients. The training data was used to train PLS, Support Vector Machine, and Random Forest models using all spectra and selected wavelengths. All models achieved high accuracies, indicating that even using a few wavelengths, it is possible to accurately predict the flesh firmness of persimmon fruits.
format Objeto de conferencia
id ReDivia8879
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Español
publishDate 2024
publishDateRange 2024
publishDateSort 2024
record_format dspace
spelling ReDivia88792025-04-25T14:50:52Z Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR Castillo-Gironés, Salvador González-Muelas, Ángel Cubero, Sergio Rodríguez, Alejandro Munera, Sandra Salvador, Alejandra Guirao, Alberto Gómez-Sanchis, Juan Blasco, José N01 Agricultural engineering Diospyros kaki Spectral analysis Firmness Quality of persimmon cv 'Rojo Brillante' fruits can be affected by changes in texture during postharvest storage if storage conditions are not appropriate, which can impact consumer acceptance. Therefore, developing accurate tools to predict texture before marketing is of great interest. Hyperspectral imaging is a non-destructive technology that has been proven effective for predicting internal attributes. This study aimed to evaluate the usefulness of hyperspectral images for predicting flesh firmness. A total of 3,340 persimmons were stored for three months under different temperature conditions (0°C, 1°C, and 5°C) to induce varying changes in flesh texture. Hyperspectral images were acquired at harvest and every month for each storage condition. Flesh firmness was measured using a texturometer immediately after image acquisition. Samples were clustered into three groups using k-Means based on their firmness data and mean spectra was extracted from each persimmon. Samples were randomly divided into training (70%) and test (30%) sets. Besides, wavelength reduction was performed using Partial Least Squares Discriminant Analysis (PLS) coefficients. The training data was used to train PLS, Support Vector Machine, and Random Forest models using all spectra and selected wavelengths. All models achieved high accuracies, indicating that even using a few wavelengths, it is possible to accurately predict the flesh firmness of persimmon fruits. 2024-05-07T11:05:26Z 2024-05-07T11:05:26Z 2023 conferenceObject Castillo-Gironés, S., González-Muelas, A., Cubero, S., Rodríguez, A., Munera, S., Salvador, A., Guirao, A., Gómez-Sanchís, J., Blasco, J. (2023) Determinación de la textura en caqui ‘Rojo brillante’ mediante imagen hiperspectral Vis-NIR. XII Congreso Ibérico de Agroingeniería, Sevilla, p. 845-853 https://hdl.handle.net/20.500.11939/8879 es 2023-09-04 XII Congreso Ibérico de Agroingeniería Sevilla Este trabajo ha sido parcialmente financiado a través de los proyectos AEI PID2019- 107347RR-C31, C32 y C33 y fondos FEDER, y GVA CIPROM/2021/014. Salvador Castillo agradece a INIA por la beca FPI-INIA PRE2020-094491, con el apoyo de fondos FSE de la Unión Europea. Los autores agradecen a la Cooperativa Agrícola Ntra. Sra. Del Oreto Coop. V. (CANSO) por suministrar la fruta y por el apoyo técnico. Sandra Munera agradece el contrato postdoctoral Juan de la Cierva-Formación (FJC2021-047786-I) cofinanciado por el MICIN AEI/10.13039/501100011033 y la Unión Europea NextGenerationEU/PRTR. Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ openAccess electronico
spellingShingle N01 Agricultural engineering
Diospyros kaki
Spectral analysis
Firmness
Castillo-Gironés, Salvador
González-Muelas, Ángel
Cubero, Sergio
Rodríguez, Alejandro
Munera, Sandra
Salvador, Alejandra
Guirao, Alberto
Gómez-Sanchis, Juan
Blasco, José
Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title_full Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title_fullStr Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title_full_unstemmed Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title_short Determinación de la textura en caqui "Rojo brillante" mediante imagen hyiperspectral Vis-NIR
title_sort determinacion de la textura en caqui rojo brillante mediante imagen hyiperspectral vis nir
topic N01 Agricultural engineering
Diospyros kaki
Spectral analysis
Firmness
url https://hdl.handle.net/20.500.11939/8879
work_keys_str_mv AT castillogironessalvador determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT gonzalezmuelasangel determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT cuberosergio determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT rodriguezalejandro determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT munerasandra determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT salvadoralejandra determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT guiraoalberto determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT gomezsanchisjuan determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir
AT blascojose determinaciondelatexturaencaquirojobrillantemedianteimagenhyiperspectralvisnir