Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas excha...
| Autores principales: | , , , , , |
|---|---|
| Formato: | conferenceObject |
| Lenguaje: | Inglés |
| Publicado: |
IEEE
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/20.500.11939/8853 https://ieeexplore.ieee.org/document/10424238 |
| _version_ | 1855032866438643712 |
|---|---|
| author | Ramírez-Cuesta, Juan M. Vanella, Daniela Intrigliolo, Diego S. Bolumar, J. Martínez-Calvo, José Pérez-Pérez, Juan G. |
| author_browse | Bolumar, J. Intrigliolo, Diego S. Martínez-Calvo, José Pérez-Pérez, Juan G. Ramírez-Cuesta, Juan M. Vanella, Daniela |
| author_facet | Ramírez-Cuesta, Juan M. Vanella, Daniela Intrigliolo, Diego S. Bolumar, J. Martínez-Calvo, José Pérez-Pérez, Juan G. |
| author_sort | Ramírez-Cuesta, Juan M. |
| collection | ReDivia |
| description | The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas exchange and chlorophyll fluorescence parameters in a broccoli (‘Brassica oleracea’ cv. ‘Ulysses’) cultivation. For this purpose, six field campaigns were carried during the growing season 2023. The obtained relationships evidence the better accuracies in predicting gas exchange and chlorophyll fluorescence parameters by using the TIR domain in comparison to the use of VIS-NIR hyperspectral data (absolute correlation coefficients of 0.62-0.81 and 0.51-0.67, respectively). The relationships obtained for chlorophyll fluorescence parameters were more accurate than those relationships obtained for gas exchange parameters, independently on the use of TIR or VIS-NIR hyperspectral data. These results suggest that other co-variables should be included in order to improve the obtained relationships (i.e. combination of VIS-NIR and TIR domain, agrometeorological data and soil water content). The identification of the most appropriate methodology for deriving CWS will allow transferring the knowledge acquired in this study to sensors on board proximal/remote platforms (e.g., unmanned aerial vehicles and/or satellites) with the ultimate goal of obtaining spatially distributed CWS estimates. |
| format | conferenceObject |
| id | ReDivia8853 |
| institution | Instituto Valenciano de Investigaciones Agrarias (IVIA) |
| language | Inglés |
| publishDate | 2024 |
| publishDateRange | 2024 |
| publishDateSort | 2024 |
| publisher | IEEE |
| publisherStr | IEEE |
| record_format | dspace |
| spelling | ReDivia88532025-04-25T14:50:49Z Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli Ramírez-Cuesta, Juan M. Vanella, Daniela Intrigliolo, Diego S. Bolumar, J. Martínez-Calvo, José Pérez-Pérez, Juan G. Crop water status Apparent transpiration Electron transport rate Photosystem II efficiency Proximal sensing F06 Irrigation P10 Water resources and management U10 Mathematical and statistical methods Stomatal conductance Reflectance Brassica oleracea The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas exchange and chlorophyll fluorescence parameters in a broccoli (‘Brassica oleracea’ cv. ‘Ulysses’) cultivation. For this purpose, six field campaigns were carried during the growing season 2023. The obtained relationships evidence the better accuracies in predicting gas exchange and chlorophyll fluorescence parameters by using the TIR domain in comparison to the use of VIS-NIR hyperspectral data (absolute correlation coefficients of 0.62-0.81 and 0.51-0.67, respectively). The relationships obtained for chlorophyll fluorescence parameters were more accurate than those relationships obtained for gas exchange parameters, independently on the use of TIR or VIS-NIR hyperspectral data. These results suggest that other co-variables should be included in order to improve the obtained relationships (i.e. combination of VIS-NIR and TIR domain, agrometeorological data and soil water content). The identification of the most appropriate methodology for deriving CWS will allow transferring the knowledge acquired in this study to sensors on board proximal/remote platforms (e.g., unmanned aerial vehicles and/or satellites) with the ultimate goal of obtaining spatially distributed CWS estimates. 2024-04-30T10:06:01Z 2024-04-30T10:06:01Z 2023 conferenceObject Ramírez-Cuesta, J. M., Intrigliolo, D. S., Calvo, J. M., Vanella, D., Bolumar, J. B., & Pérez-Pérez, J. G. (2023). Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli. International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp. 126-130. 979-8-3503-1272-0/23 https://hdl.handle.net/20.500.11939/8853 10.1109/MetroAgriFor58484.2023.10424238 https://ieeexplore.ieee.org/document/10424238 en 2023-11 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) Pisa, Italy This study was carried out within the framework of the projects DigitalRiego (INNEST/2022/63) financed by the Agència Valenciana de la Innovació and the European Union; and E-STRESS (TED2021-131448A-I00) financed by the Agencia Estatal de Investigación and the European Union. Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ openAccess IEEE electronico |
| spellingShingle | Crop water status Apparent transpiration Electron transport rate Photosystem II efficiency Proximal sensing F06 Irrigation P10 Water resources and management U10 Mathematical and statistical methods Stomatal conductance Reflectance Brassica oleracea Ramírez-Cuesta, Juan M. Vanella, Daniela Intrigliolo, Diego S. Bolumar, J. Martínez-Calvo, José Pérez-Pérez, Juan G. Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title | Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title_full | Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title_fullStr | Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title_full_unstemmed | Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title_short | Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| title_sort | capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli |
| topic | Crop water status Apparent transpiration Electron transport rate Photosystem II efficiency Proximal sensing F06 Irrigation P10 Water resources and management U10 Mathematical and statistical methods Stomatal conductance Reflectance Brassica oleracea |
| url | https://hdl.handle.net/20.500.11939/8853 https://ieeexplore.ieee.org/document/10424238 |
| work_keys_str_mv | AT ramirezcuestajuanm capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli AT vanelladaniela capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli AT intrigliolodiegos capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli AT bolumarj capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli AT martinezcalvojose capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli AT perezperezjuang capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli |