Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli

The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas excha...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramírez-Cuesta, Juan M., Vanella, Daniela, Intrigliolo, Diego S., Bolumar, J., Martínez-Calvo, José, Pérez-Pérez, Juan G.
Formato: conferenceObject
Lenguaje:Inglés
Publicado: IEEE 2024
Materias:
Acceso en línea:https://hdl.handle.net/20.500.11939/8853
https://ieeexplore.ieee.org/document/10424238
_version_ 1855032866438643712
author Ramírez-Cuesta, Juan M.
Vanella, Daniela
Intrigliolo, Diego S.
Bolumar, J.
Martínez-Calvo, José
Pérez-Pérez, Juan G.
author_browse Bolumar, J.
Intrigliolo, Diego S.
Martínez-Calvo, José
Pérez-Pérez, Juan G.
Ramírez-Cuesta, Juan M.
Vanella, Daniela
author_facet Ramírez-Cuesta, Juan M.
Vanella, Daniela
Intrigliolo, Diego S.
Bolumar, J.
Martínez-Calvo, José
Pérez-Pérez, Juan G.
author_sort Ramírez-Cuesta, Juan M.
collection ReDivia
description The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas exchange and chlorophyll fluorescence parameters in a broccoli (‘Brassica oleracea’ cv. ‘Ulysses’) cultivation. For this purpose, six field campaigns were carried during the growing season 2023. The obtained relationships evidence the better accuracies in predicting gas exchange and chlorophyll fluorescence parameters by using the TIR domain in comparison to the use of VIS-NIR hyperspectral data (absolute correlation coefficients of 0.62-0.81 and 0.51-0.67, respectively). The relationships obtained for chlorophyll fluorescence parameters were more accurate than those relationships obtained for gas exchange parameters, independently on the use of TIR or VIS-NIR hyperspectral data. These results suggest that other co-variables should be included in order to improve the obtained relationships (i.e. combination of VIS-NIR and TIR domain, agrometeorological data and soil water content). The identification of the most appropriate methodology for deriving CWS will allow transferring the knowledge acquired in this study to sensors on board proximal/remote platforms (e.g., unmanned aerial vehicles and/or satellites) with the ultimate goal of obtaining spatially distributed CWS estimates.
format conferenceObject
id ReDivia8853
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher IEEE
publisherStr IEEE
record_format dspace
spelling ReDivia88532025-04-25T14:50:49Z Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli Ramírez-Cuesta, Juan M. Vanella, Daniela Intrigliolo, Diego S. Bolumar, J. Martínez-Calvo, José Pérez-Pérez, Juan G. Crop water status Apparent transpiration Electron transport rate Photosystem II efficiency Proximal sensing F06 Irrigation P10 Water resources and management U10 Mathematical and statistical methods Stomatal conductance Reflectance Brassica oleracea The spatial determination of crop water status (CWS) requires the establishment of robust relationships between direct and indirect measurements. The objective of this study was to explore the potentialities of visible-near infrared (VIS-NIR) hyperspectral and thermal (TIR) data to predict gas exchange and chlorophyll fluorescence parameters in a broccoli (‘Brassica oleracea’ cv. ‘Ulysses’) cultivation. For this purpose, six field campaigns were carried during the growing season 2023. The obtained relationships evidence the better accuracies in predicting gas exchange and chlorophyll fluorescence parameters by using the TIR domain in comparison to the use of VIS-NIR hyperspectral data (absolute correlation coefficients of 0.62-0.81 and 0.51-0.67, respectively). The relationships obtained for chlorophyll fluorescence parameters were more accurate than those relationships obtained for gas exchange parameters, independently on the use of TIR or VIS-NIR hyperspectral data. These results suggest that other co-variables should be included in order to improve the obtained relationships (i.e. combination of VIS-NIR and TIR domain, agrometeorological data and soil water content). The identification of the most appropriate methodology for deriving CWS will allow transferring the knowledge acquired in this study to sensors on board proximal/remote platforms (e.g., unmanned aerial vehicles and/or satellites) with the ultimate goal of obtaining spatially distributed CWS estimates. 2024-04-30T10:06:01Z 2024-04-30T10:06:01Z 2023 conferenceObject Ramírez-Cuesta, J. M., Intrigliolo, D. S., Calvo, J. M., Vanella, D., Bolumar, J. B., & Pérez-Pérez, J. G. (2023). Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli. International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pp. 126-130. 979-8-3503-1272-0/23 https://hdl.handle.net/20.500.11939/8853 10.1109/MetroAgriFor58484.2023.10424238 https://ieeexplore.ieee.org/document/10424238 en 2023-11 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) Pisa, Italy This study was carried out within the framework of the projects DigitalRiego (INNEST/2022/63) financed by the Agència Valenciana de la Innovació and the European Union; and E-STRESS (TED2021-131448A-I00) financed by the Agencia Estatal de Investigación and the European Union. Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ openAccess IEEE electronico
spellingShingle Crop water status
Apparent transpiration
Electron transport rate
Photosystem II efficiency
Proximal sensing
F06 Irrigation
P10 Water resources and management
U10 Mathematical and statistical methods
Stomatal conductance
Reflectance
Brassica oleracea
Ramírez-Cuesta, Juan M.
Vanella, Daniela
Intrigliolo, Diego S.
Bolumar, J.
Martínez-Calvo, José
Pérez-Pérez, Juan G.
Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title_full Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title_fullStr Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title_full_unstemmed Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title_short Capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
title_sort capability of hyperspectral and thermal data to predict gas exchange and chlorophyll fluorescence parameters in broccoli
topic Crop water status
Apparent transpiration
Electron transport rate
Photosystem II efficiency
Proximal sensing
F06 Irrigation
P10 Water resources and management
U10 Mathematical and statistical methods
Stomatal conductance
Reflectance
Brassica oleracea
url https://hdl.handle.net/20.500.11939/8853
https://ieeexplore.ieee.org/document/10424238
work_keys_str_mv AT ramirezcuestajuanm capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli
AT vanelladaniela capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli
AT intrigliolodiegos capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli
AT bolumarj capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli
AT martinezcalvojose capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli
AT perezperezjuang capabilityofhyperspectralandthermaldatatopredictgasexchangeandchlorophyllfluorescenceparametersinbroccoli