New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis

Anthracnose is one of the most relevant diseases of mango crops in producing regions, affecting 60% of production. Currently, its detection is carried out in late stages by human visual inspection. Hyperspectral imaging systems allow the development of non-destructive solutions to inspect and detect...

Full description

Bibliographic Details
Main Authors: Velásquez, Carlos, Prieto, Flavio, Palou, Lluís, Cubero, Sergio, Blasco, José, Aleixos, Nuria
Format: Artículo
Language:Inglés
Published: Springer 2023
Subjects:
Online Access:https://hdl.handle.net/20.500.11939/8743
https://link.springer.com/article/10.1007/s11694-023-02173-3
_version_ 1855492550868074496
author Velásquez, Carlos
Prieto, Flavio
Palou, Lluís
Cubero, Sergio
Blasco, José
Aleixos, Nuria
author_browse Aleixos, Nuria
Blasco, José
Cubero, Sergio
Palou, Lluís
Prieto, Flavio
Velásquez, Carlos
author_facet Velásquez, Carlos
Prieto, Flavio
Palou, Lluís
Cubero, Sergio
Blasco, José
Aleixos, Nuria
author_sort Velásquez, Carlos
collection ReDivia
description Anthracnose is one of the most relevant diseases of mango crops in producing regions, affecting 60% of production. Currently, its detection is carried out in late stages by human visual inspection. Hyperspectral imaging systems allow the development of non-destructive solutions to inspect and detect internal damage. This work aimed to develop a system for detecting anthracnose in mango fruits using Vis-NIR hyperspectral imaging and discriminant analysis. The usefulness of three-dimensionality reduction methods to minimise redundancy in the spectral data and to obtain a compact number of wavelengths that effectively allow the detection of anthracnose symptoms in mango fruits is also explored. As a result, a classification model based on discriminant analysis and Pearson correlation coefficient was obtained, showing the potential of hyperspectral data to robustly allow the detection of anthracnose symptoms with full or reduced spectra. The findings reported in this study can serve as the basis for developing an anthracnose detection system in mango fruits with multispectral cameras
format Artículo
id ReDivia8743
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Springer
publisherStr Springer
record_format dspace
spelling ReDivia87432025-04-25T14:49:25Z New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis Velásquez, Carlos Prieto, Flavio Palou, Lluís Cubero, Sergio Blasco, José Aleixos, Nuria Anthracnose disease Automatic inspection Fruit quality Vis-NIR hyperspectral imaging H20 Plant diseases N20 Agricultural machinery and equipment U30 Research methods Mangifera indica Image analysis Disease symptoms Anthracnose is one of the most relevant diseases of mango crops in producing regions, affecting 60% of production. Currently, its detection is carried out in late stages by human visual inspection. Hyperspectral imaging systems allow the development of non-destructive solutions to inspect and detect internal damage. This work aimed to develop a system for detecting anthracnose in mango fruits using Vis-NIR hyperspectral imaging and discriminant analysis. The usefulness of three-dimensionality reduction methods to minimise redundancy in the spectral data and to obtain a compact number of wavelengths that effectively allow the detection of anthracnose symptoms in mango fruits is also explored. As a result, a classification model based on discriminant analysis and Pearson correlation coefficient was obtained, showing the potential of hyperspectral data to robustly allow the detection of anthracnose symptoms with full or reduced spectra. The findings reported in this study can serve as the basis for developing an anthracnose detection system in mango fruits with multispectral cameras 2023-11-21T08:53:22Z 2023-11-21T08:53:22Z 2024 article publishedVersion Velásquez, C., Prieto, F., Palou, L., Cubero, S., Blasco, J., & Aleixos, N. (2024). New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis. Journal of Food Measurement and Characterization, 18(1), 560-570. 2193-4126 (Print ISSN) 2193-4134 (Electronic ISSN) https://hdl.handle.net/20.500.11939/8743 10.1007/s11694-023-02173-3 https://link.springer.com/article/10.1007/s11694-023-02173-3 en This work was partially funded by the Ministerio de ciencia y tecnología de Colombia (MINCIENCIAS) through its call “convocatoria 785 para doctorados nacionales 2017”, Universidad Nacional de Colombia through its programme “convocatoria para el apoyo a proyectos de investigación y creación artística de la sede Bogotá de la Universidad Nacional de Colombia-2019” and the Sistema General de Regalías CTeI-Colombia (BPIN 2020000100415, “Desarrollo de un sistema de óptico computacional para estimar el contenido de carbono orgánico de suelos agrícolas a través de imágenes espectrales e inteligencia artificial en cultivos cítricos de Santander”, code UIS-8933) and through GVA-IVIA 52204 and GVA-PROMETEO CIPROM/2021/014. info:eu-repo/grantAgreement/ERDF/PCV 2021-2027/52204/ES/Tecnología inteligente para una agricultura digital, sostenible y precisa en la comunitat valenciana/AgrIntel·ligència-CV Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ openAccess Springer electronico
spellingShingle Anthracnose disease
Automatic inspection
Fruit quality
Vis-NIR hyperspectral imaging
H20 Plant diseases
N20 Agricultural machinery and equipment
U30 Research methods
Mangifera indica
Image analysis
Disease symptoms
Velásquez, Carlos
Prieto, Flavio
Palou, Lluís
Cubero, Sergio
Blasco, José
Aleixos, Nuria
New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title_full New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title_fullStr New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title_full_unstemmed New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title_short New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis
title_sort new model for the automatic detection of anthracnose in mango fruits based on vis nir hyperspectral imaging and discriminant analysis
topic Anthracnose disease
Automatic inspection
Fruit quality
Vis-NIR hyperspectral imaging
H20 Plant diseases
N20 Agricultural machinery and equipment
U30 Research methods
Mangifera indica
Image analysis
Disease symptoms
url https://hdl.handle.net/20.500.11939/8743
https://link.springer.com/article/10.1007/s11694-023-02173-3
work_keys_str_mv AT velasquezcarlos newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis
AT prietoflavio newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis
AT paloulluis newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis
AT cuberosergio newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis
AT blascojose newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis
AT aleixosnuria newmodelfortheautomaticdetectionofanthracnoseinmangofruitsbasedonvisnirhyperspectralimaginganddiscriminantanalysis