Color transform to optimize fruit ripeness discrimination in dichromats

Aim: To develop and test a color transform for red-green color defectives to enhance tomatoipeness judgements. Experimental Method: Congenital protan and deutan color defectives suffer sensitivity losses in the red-green mechanism [1] compromising performance in color-discrimination-based everyd...

Full description

Bibliographic Details
Main Authors: Antela, K., Morales-Rubio, A., Besada, Cristina, Tarancón, Paula, Cervera, M. L., Luque, M. J.
Other Authors: Gene, A.
Format: Objeto de conferencia
Language:Inglés
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/20.500.11939/7423
_version_ 1855492284789817344
author Antela, K.
Morales-Rubio, A.
Besada, Cristina
Tarancón, Paula
Cervera, M. L.
Luque, M. J.
author2 Gene, A.
author_browse Antela, K.
Besada, Cristina
Cervera, M. L.
Gene, A.
Luque, M. J.
Morales-Rubio, A.
Tarancón, Paula
author_facet Gene, A.
Antela, K.
Morales-Rubio, A.
Besada, Cristina
Tarancón, Paula
Cervera, M. L.
Luque, M. J.
author_sort Antela, K.
collection ReDivia
description Aim: To develop and test a color transform for red-green color defectives to enhance tomatoipeness judgements. Experimental Method: Congenital protan and deutan color defectives suffer sensitivity losses in the red-green mechanism [1] compromising performance in color-discrimination-based everyday tasks [2], which may be compensated by procedures designed to optimize image color gamuts to minimize color confusion [3]. Given that red-green defectives retain normal discrimination along the blue-yellow axis in color space [1], we propose a simple procedure to recode redgreen color differences in CIELAB color space as blue-yellow color differences, to allow red-green defectives to correctly judge the ripeness of tomatoes. An agricultural cooperative of Perelló supplied and classified by color the tomato samples in a controlled manner in four standard ripeness stages. Sample color was measured with a portable Minolta CR-300 colorimeter (Minolta Co. Ltd, Osaka, Japan). Tomatoes were photographed with a Smartphone (Samsung Galaxy S7 edge model SMG935F with a 12.2 MP camera). RGB values of the image were transformed to XYZ values using Matlab’s sRGB transform, and then to CIEL*a*b*, using as reference white a white sample illuminated as the samples. Dichromatic perception of the images was simulated by the corresponding pair algorithm [4]. The modified palette was obtained by exchanging the values of the red-green (a*) and blue-yellow (b*) descriptors (Fig. 1).
format Objeto de conferencia
id ReDivia7423
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
record_format dspace
spelling ReDivia74232025-04-25T14:52:46Z Color transform to optimize fruit ripeness discrimination in dichromats Antela, K. Morales-Rubio, A. Besada, Cristina Tarancón, Paula Cervera, M. L. Luque, M. J. Gene, A. Color transform Ripeness Aim: To develop and test a color transform for red-green color defectives to enhance tomatoipeness judgements. Experimental Method: Congenital protan and deutan color defectives suffer sensitivity losses in the red-green mechanism [1] compromising performance in color-discrimination-based everyday tasks [2], which may be compensated by procedures designed to optimize image color gamuts to minimize color confusion [3]. Given that red-green defectives retain normal discrimination along the blue-yellow axis in color space [1], we propose a simple procedure to recode redgreen color differences in CIELAB color space as blue-yellow color differences, to allow red-green defectives to correctly judge the ripeness of tomatoes. An agricultural cooperative of Perelló supplied and classified by color the tomato samples in a controlled manner in four standard ripeness stages. Sample color was measured with a portable Minolta CR-300 colorimeter (Minolta Co. Ltd, Osaka, Japan). Tomatoes were photographed with a Smartphone (Samsung Galaxy S7 edge model SMG935F with a 12.2 MP camera). RGB values of the image were transformed to XYZ values using Matlab’s sRGB transform, and then to CIEL*a*b*, using as reference white a white sample illuminated as the samples. Dichromatic perception of the images was simulated by the corresponding pair algorithm [4]. The modified palette was obtained by exchanging the values of the red-green (a*) and blue-yellow (b*) descriptors (Fig. 1). 2021-06-15T10:00:53Z 2021-06-15T10:00:53Z 2020 conferenceObject Antela, K., Morales-Rubio, A., Besada, C., Tarancón, P., Cervera, M.L., & Luque, M.J. (2020). Color transform to optimize fruit ripeness discrimination in dichromats. En: Gene, A., Luque, MJ., Sañudo, F., Bueno, I., Herández, R., García, MC., Esteve, J. & Díez, MA. (Eds). V Congreso Internacional de Jóvenes Optometristas. pp: 83-84. http://hdl.handle.net/20.500.11939/7423 en 2020-11-23 V Congreso Internacional de Jóvenes Optometristas Atribución-NoComercial-SinDerivadas 3.0 España http://creativecommons.org/licenses/by-nc-nd/3.0/es/ openAccess electronico
spellingShingle Color transform
Ripeness
Antela, K.
Morales-Rubio, A.
Besada, Cristina
Tarancón, Paula
Cervera, M. L.
Luque, M. J.
Color transform to optimize fruit ripeness discrimination in dichromats
title Color transform to optimize fruit ripeness discrimination in dichromats
title_full Color transform to optimize fruit ripeness discrimination in dichromats
title_fullStr Color transform to optimize fruit ripeness discrimination in dichromats
title_full_unstemmed Color transform to optimize fruit ripeness discrimination in dichromats
title_short Color transform to optimize fruit ripeness discrimination in dichromats
title_sort color transform to optimize fruit ripeness discrimination in dichromats
topic Color transform
Ripeness
url http://hdl.handle.net/20.500.11939/7423
work_keys_str_mv AT antelak colortransformtooptimizefruitripenessdiscriminationindichromats
AT moralesrubioa colortransformtooptimizefruitripenessdiscriminationindichromats
AT besadacristina colortransformtooptimizefruitripenessdiscriminationindichromats
AT taranconpaula colortransformtooptimizefruitripenessdiscriminationindichromats
AT cerveraml colortransformtooptimizefruitripenessdiscriminationindichromats
AT luquemj colortransformtooptimizefruitripenessdiscriminationindichromats