An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis
A Citrus sinensis spontaneous mutant, navel negra ( nan), produces fruit with an abnormal brown- colored flavedo during ripening. Analysis of pigment composition in the wild- type and nan flavedo suggested that typical ripening- related chlorophyll ( Chl) degradation, but not carotenoid biosynthesis...
| Autores principales: | , , , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Acceso en línea: | http://hdl.handle.net/20.500.11939/5621 |
| _version_ | 1855032308163149824 |
|---|---|
| author | Alos, Enriqueta Roca, Maria Iglesias, Domingo J. Mínguez-Mosquera, María I. Damasceno, Cynthia Maria Borges Thannhauser, Theodore William Rose, Jocelyn K. C. Talón, Manuel Cercós, Manuel |
| author_browse | Alos, Enriqueta Cercós, Manuel Damasceno, Cynthia Maria Borges Iglesias, Domingo J. Mínguez-Mosquera, María I. Roca, Maria Rose, Jocelyn K. C. Talón, Manuel Thannhauser, Theodore William |
| author_facet | Alos, Enriqueta Roca, Maria Iglesias, Domingo J. Mínguez-Mosquera, María I. Damasceno, Cynthia Maria Borges Thannhauser, Theodore William Rose, Jocelyn K. C. Talón, Manuel Cercós, Manuel |
| author_sort | Alos, Enriqueta |
| collection | ReDivia |
| description | A Citrus sinensis spontaneous mutant, navel negra ( nan), produces fruit with an abnormal brown- colored flavedo during ripening. Analysis of pigment composition in the wild- type and nan flavedo suggested that typical ripening- related chlorophyll ( Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay- green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR ( for STAY- GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay- green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis- related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress. |
| format | article |
| id | ReDivia5621 |
| institution | Instituto Valenciano de Investigaciones Agrarias (IVIA) |
| language | Inglés |
| publishDate | 2017 |
| publishDateRange | 2017 |
| publishDateSort | 2017 |
| record_format | dspace |
| spelling | ReDivia56212025-04-25T14:43:26Z An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis Alos, Enriqueta Roca, Maria Iglesias, Domingo J. Mínguez-Mosquera, María I. Damasceno, Cynthia Maria Borges Thannhauser, Theodore William Rose, Jocelyn K. C. Talón, Manuel Cercós, Manuel A Citrus sinensis spontaneous mutant, navel negra ( nan), produces fruit with an abnormal brown- colored flavedo during ripening. Analysis of pigment composition in the wild- type and nan flavedo suggested that typical ripening- related chlorophyll ( Chl) degradation, but not carotenoid biosynthesis, was impaired in the mutant, identifying nan as a type C stay- green mutant. nan exhibited normal expression of Chl biosynthetic and catabolic genes and chlorophyllase activity but no accumulation of dephytylated Chl compounds during ripening, suggesting that the mutation is not related to a lesion in any of the principal enzymatic steps in Chl catabolism. Transcript profiling using a citrus microarray indicated that a citrus ortholog of a number of SGR ( for STAY- GREEN) genes was expressed at substantially lower levels in nan, both prior to and during ripening. However, the pattern of catabolite accumulation and SGR sequence analysis suggested that the nan mutation is distinct from those in previously described stay- green mutants and is associated with an upstream regulatory step, rather than directly influencing a specific component of Chl catabolism. Transcriptomic and comparative proteomic profiling further indicated that the nan mutation resulted in the suppressed expression of numerous photosynthesis- related genes and in the induction of genes that are associated with oxidative stress. These data, along with metabolite analyses, suggest that nan fruit employ a number of molecular mechanisms to compensate for the elevated Chl levels and associated photooxidative stress. 2017-06-01T10:12:41Z 2017-06-01T10:12:41Z 2008 JUL 2008 article acceptedVersion Alos, E., Roca, M., Iglesias, D. J., Minguez-Mosquera, M., Damasceno, C. M. B., Thannhauser, T. W. et al. (2008). An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiology, 147(3), 1300-1315. 0032-0889 http://hdl.handle.net/20.500.11939/5621 10.1104/pp.108.119917 en openAccess Impreso |
| spellingShingle | Alos, Enriqueta Roca, Maria Iglesias, Domingo J. Mínguez-Mosquera, María I. Damasceno, Cynthia Maria Borges Thannhauser, Theodore William Rose, Jocelyn K. C. Talón, Manuel Cercós, Manuel An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title | An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title_full | An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title_fullStr | An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title_full_unstemmed | An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title_short | An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| title_sort | evaluation of the basis and consequences of a stay green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis |
| url | http://hdl.handle.net/20.500.11939/5621 |
| work_keys_str_mv | AT alosenriqueta anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT rocamaria anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT iglesiasdomingoj anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT minguezmosqueramariai anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT damascenocynthiamariaborges anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT thannhausertheodorewilliam anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT rosejocelynkc anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT talonmanuel anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT cercosmanuel anevaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT alosenriqueta evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT rocamaria evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT iglesiasdomingoj evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT minguezmosqueramariai evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT damascenocynthiamariaborges evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT thannhausertheodorewilliam evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT rosejocelynkc evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT talonmanuel evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis AT cercosmanuel evaluationofthebasisandconsequencesofastaygreenmutationinthenavelnegracitrusmutantusingtranscriptomicandproteomicprofilingandmetaboliteanalysis |