Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques

Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out m...

Descripción completa

Detalles Bibliográficos
Autores principales: Gómez-Sanchís, Juan, Martín-Guerrero, José D., Soria-Olivas, Emilio, Martinez-Sober, Marcelino, Magdalena-Benedito, Rafael, Blasco, José
Formato: Artículo
Lenguaje:Inglés
Publicado: 2017
Acceso en línea:http://hdl.handle.net/20.500.11939/5319
_version_ 1855491905279754240
author Gómez-Sanchís, Juan
Martín-Guerrero, José D.
Soria-Olivas, Emilio
Martinez-Sober, Marcelino
Magdalena-Benedito, Rafael
Blasco, José
author_browse Blasco, José
Gómez-Sanchís, Juan
Magdalena-Benedito, Rafael
Martinez-Sober, Marcelino
Martín-Guerrero, José D.
Soria-Olivas, Emilio
author_facet Gómez-Sanchís, Juan
Martín-Guerrero, José D.
Soria-Olivas, Emilio
Martinez-Sober, Marcelino
Magdalena-Benedito, Rafael
Blasco, José
author_sort Gómez-Sanchís, Juan
collection ReDivia
description Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.
format Artículo
id ReDivia5319
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling ReDivia53192025-04-25T14:42:02Z Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques Gómez-Sanchís, Juan Martín-Guerrero, José D. Soria-Olivas, Emilio Martinez-Sober, Marcelino Magdalena-Benedito, Rafael Blasco, José Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach. 2017-06-01T10:12:08Z 2017-06-01T10:12:08Z 2012 JAN 2012 article Gomez-Sanchis, J., Martin-Guerrero, J. D., Soria-Olivas, Emilio, Martinez-Sober, Marcelino, M.-Benedito, Rafael, Blasco, J. (2012). Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780-785. 0957-4174 http://hdl.handle.net/20.500.11939/5319 10.1016/j.eswa.2011.07.073 en openAccess Impreso
spellingShingle Gómez-Sanchís, Juan
Martín-Guerrero, José D.
Soria-Olivas, Emilio
Martinez-Sober, Marcelino
Magdalena-Benedito, Rafael
Blasco, José
Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title_full Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title_fullStr Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title_full_unstemmed Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title_short Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
title_sort detecting rottenness caused by penicillium genus fungi in citrus fruits using machine learning techniques
url http://hdl.handle.net/20.500.11939/5319
work_keys_str_mv AT gomezsanchisjuan detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques
AT martinguerrerojosed detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques
AT soriaolivasemilio detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques
AT martinezsobermarcelino detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques
AT magdalenabeneditorafael detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques
AT blascojose detectingrottennesscausedbypenicilliumgenusfungiincitrusfruitsusingmachinelearningtechniques