Usefulness of thermography for plant water stress detection in citrus and persimmon trees
The feasibility of using canopy temperature (T-c) measured with a hand-operated infrared thermographic camera as a water stress indicator was evaluated in the field during two seasons on citrus and persimmon trees subjected to different levels of deficit irrigation. In both species, which differ in...
| Autores principales: | , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Acceso en línea: | http://hdl.handle.net/20.500.11939/4772 |
| _version_ | 1855032174096416768 |
|---|---|
| author | Ballester, Carlos Jiménez-Bello, Miguel Ángel Castel, Juan R. Intrigliolo, Diego S. |
| author_browse | Ballester, Carlos Castel, Juan R. Intrigliolo, Diego S. Jiménez-Bello, Miguel Ángel |
| author_facet | Ballester, Carlos Jiménez-Bello, Miguel Ángel Castel, Juan R. Intrigliolo, Diego S. |
| author_sort | Ballester, Carlos |
| collection | ReDivia |
| description | The feasibility of using canopy temperature (T-c) measured with a hand-operated infrared thermographic camera as a water stress indicator was evaluated in the field during two seasons on citrus and persimmon trees subjected to different levels of deficit irrigation. In both species, which differ in leaf anatomy and stomatal response to environmental conditions, T-c, was compared with midday stem water potential (Psi(s)) measurements. In persimmon trees, leaf stomatal conductance (g(s)) was also measured. In 2009, images were taken from the sunlit and shady sides of the canopies. Based on the results obtained, during the second experimental season images were taken from the sunlit side of the trees and also from above the canopy. In persimmon, trees under deficit irrigation had lower Psi(s) and g(s) what resulted in a clear increase in T-c regardless of the position from where the pictures were taken. The maximum T-c difference between deficit-irrigated and control trees observed was of 4.4 degrees C, which occurred when the stressed trees had Psi(s) values 1.1 MPa lower than the control ones. In persimmon trees, T-c was the most sensitive indicator of plant water status particularly due to the lower tree-to-tree variability as compared to Psi(s) and g(s). On the other hand, in citrus trees T-c was not always affected by plant water stress. Only in the second experimental season, when air vapour pressure deficit values were below 2.7 kPa and images were also taken from above the canopies, deficit-irrigated trees had higher T-c than the control ones, this difference being at most 1.7 degrees C. Overall, the results show that hand-operated thermographic cameras can be used to detect plant water stress in both fruit tree species. Nevertheless, the use of T-c measurements to detect plant water stress appears to be more precise in persimmon than in orange citrus. This might be because persimmon trees have larger leaf size which determines higher canopy resistance allowing for higher increases in canopy temperature in response to water stress via stomatal closure. (C) 2012 Elsevier B.V. All rights reserved. |
| format | article |
| id | ReDivia4772 |
| institution | Instituto Valenciano de Investigaciones Agrarias (IVIA) |
| language | Inglés |
| publishDate | 2017 |
| publishDateRange | 2017 |
| publishDateSort | 2017 |
| record_format | dspace |
| spelling | ReDivia47722025-04-25T14:44:22Z Usefulness of thermography for plant water stress detection in citrus and persimmon trees Ballester, Carlos Jiménez-Bello, Miguel Ángel Castel, Juan R. Intrigliolo, Diego S. The feasibility of using canopy temperature (T-c) measured with a hand-operated infrared thermographic camera as a water stress indicator was evaluated in the field during two seasons on citrus and persimmon trees subjected to different levels of deficit irrigation. In both species, which differ in leaf anatomy and stomatal response to environmental conditions, T-c, was compared with midday stem water potential (Psi(s)) measurements. In persimmon trees, leaf stomatal conductance (g(s)) was also measured. In 2009, images were taken from the sunlit and shady sides of the canopies. Based on the results obtained, during the second experimental season images were taken from the sunlit side of the trees and also from above the canopy. In persimmon, trees under deficit irrigation had lower Psi(s) and g(s) what resulted in a clear increase in T-c regardless of the position from where the pictures were taken. The maximum T-c difference between deficit-irrigated and control trees observed was of 4.4 degrees C, which occurred when the stressed trees had Psi(s) values 1.1 MPa lower than the control ones. In persimmon trees, T-c was the most sensitive indicator of plant water status particularly due to the lower tree-to-tree variability as compared to Psi(s) and g(s). On the other hand, in citrus trees T-c was not always affected by plant water stress. Only in the second experimental season, when air vapour pressure deficit values were below 2.7 kPa and images were also taken from above the canopies, deficit-irrigated trees had higher T-c than the control ones, this difference being at most 1.7 degrees C. Overall, the results show that hand-operated thermographic cameras can be used to detect plant water stress in both fruit tree species. Nevertheless, the use of T-c measurements to detect plant water stress appears to be more precise in persimmon than in orange citrus. This might be because persimmon trees have larger leaf size which determines higher canopy resistance allowing for higher increases in canopy temperature in response to water stress via stomatal closure. (C) 2012 Elsevier B.V. All rights reserved. 2017-06-01T10:10:58Z 2017-06-01T10:10:58Z 2013 JAN 15 2013 article acceptedVersion Ballester, C., Jimenez-Bello, M.A., Castel, Juan R., Intrigliolo, Diego S. (2013). Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest Meteorology, 168, 120-129. 0168-1923 http://hdl.handle.net/20.500.11939/4772 10.1016/j.agrformet.2012.08.005 en openAccess Impreso |
| spellingShingle | Ballester, Carlos Jiménez-Bello, Miguel Ángel Castel, Juan R. Intrigliolo, Diego S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title | Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title_full | Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title_fullStr | Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title_full_unstemmed | Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title_short | Usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| title_sort | usefulness of thermography for plant water stress detection in citrus and persimmon trees |
| url | http://hdl.handle.net/20.500.11939/4772 |
| work_keys_str_mv | AT ballestercarlos usefulnessofthermographyforplantwaterstressdetectionincitrusandpersimmontrees AT jimenezbellomiguelangel usefulnessofthermographyforplantwaterstressdetectionincitrusandpersimmontrees AT casteljuanr usefulnessofthermographyforplantwaterstressdetectionincitrusandpersimmontrees AT intrigliolodiegos usefulnessofthermographyforplantwaterstressdetectionincitrusandpersimmontrees |