Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts

Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing oliveknot disease. Bioinformatic analysis of the draftgenome sequence of strain NCPPB 3335, whichencodes 5232 predicted coding genes on a totallength of 5856 998 bp and a 57.12% G + C, revealed alarge deg...

Full description

Bibliographic Details
Main Authors: Rodriguez-Palenzuela, Pablo, Matas, Isabel M., Murillo, Jesús, Lopez-Solanilla, Emilia, Bardaji, Leire, Perez-Martinez, Isabel, Rodriguez-Moskera, Martin E., Penyalver, Ramón, López, María M., Quesada, Jose M., Biehl, Bryan S., Perna, Nicole T., Glasner, Jeremy D., Cabot, Eric L., Neeno-Eckwall, Eric, Ramos, Cayo
Format: article
Language:Inglés
Published: 2017
Online Access:http://hdl.handle.net/20.500.11939/4435
Description
Summary:Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing oliveknot disease. Bioinformatic analysis of the draftgenome sequence of strain NCPPB 3335, whichencodes 5232 predicted coding genes on a totallength of 5856 998 bp and a 57.12% G + C, revealed alarge degree of conservation with Pseudomonassyringae pv. phaseolicola 1448A and P. syringae pv.tabaci 11528. However, NCPPB 3335 contains twelvevariable genomic regions, which are absent in all pre-viously sequenced P. syringae strains. Various fea-tures that could contribute to the ability of this strainto survive in a woody host were identified, includingbroad catabolic and transport capabilities for degrad-ing plant-derived aromatic compounds, the duplica-tion of sequences related to the biosynthesis of thephytohormone indoleacetic acid (iaaM, iaaH) and itsamino acid conjugate indoleacetic acid-lysine (iaaLgene), and the repertoire of strain-specific putativetype III secretion system effectors. Access to thisseventh genome sequence belonging to the ‘P. syrin-gae complex’ allowed us to identify 73 predictedcoding genes that are NCPPB 3335-specific. Resultsshown here provide the basis for detailed functionalanalysis of a tumour-inducing pathogen of woodyhosts and for the study of specific adaptations of a P.savastanoi pathovar.