Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses

Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cult...

Descripción completa

Detalles Bibliográficos
Autores principales: Penella, Consuelo, Nebauer, Sergio G., San Bautista, Alberto, López-Galarza, Salvador, Calatayud, Ángeles
Formato: article
Lenguaje:Inglés
Publicado: 2017
Acceso en línea:http://hdl.handle.net/20.500.11939/4347
https://www.sciencedirect.com/science/article/abs/pii/S0176161714000418?via%3Dihub
_version_ 1855032105396862976
author Penella, Consuelo
Nebauer, Sergio G.
San Bautista, Alberto
López-Galarza, Salvador
Calatayud, Ángeles
author_browse Calatayud, Ángeles
López-Galarza, Salvador
Nebauer, Sergio G.
Penella, Consuelo
San Bautista, Alberto
author_facet Penella, Consuelo
Nebauer, Sergio G.
San Bautista, Alberto
López-Galarza, Salvador
Calatayud, Ángeles
author_sort Penella, Consuelo
collection ReDivia
description Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3- transfer to the leaves. Increased nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks. (C) 2014 Elsevier GmbH. All rights reserved.
format article
id ReDivia4347
institution Instituto Valenciano de Investigaciones Agrarias (IVIA)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling ReDivia43472025-04-25T14:42:55Z Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses Penella, Consuelo Nebauer, Sergio G. San Bautista, Alberto López-Galarza, Salvador Calatayud, Ángeles Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3- transfer to the leaves. Increased nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks. (C) 2014 Elsevier GmbH. All rights reserved. 2017-06-01T10:09:54Z 2017-06-01T10:09:54Z 2014 JUN 15 2014 article acceptedVersion Penella, Consuelo, Nebauer, Sergio G., San Bautista, A., Lopez-Galarza, Salvador, Calatayud, Angeles (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. 0176-1617 http://hdl.handle.net/20.500.11939/4347 10.1016/j.jplph.2014.01.013 https://www.sciencedirect.com/science/article/abs/pii/S0176161714000418?via%3Dihub en openAccess Impreso
spellingShingle Penella, Consuelo
Nebauer, Sergio G.
San Bautista, Alberto
López-Galarza, Salvador
Calatayud, Ángeles
Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title_full Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title_fullStr Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title_full_unstemmed Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title_short Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses
title_sort rootstock alleviates peg induced water stress in grafted pepper seedlings physiological responses
url http://hdl.handle.net/20.500.11939/4347
https://www.sciencedirect.com/science/article/abs/pii/S0176161714000418?via%3Dihub
work_keys_str_mv AT penellaconsuelo rootstockalleviatespeginducedwaterstressingraftedpepperseedlingsphysiologicalresponses
AT nebauersergiog rootstockalleviatespeginducedwaterstressingraftedpepperseedlingsphysiologicalresponses
AT sanbautistaalberto rootstockalleviatespeginducedwaterstressingraftedpepperseedlingsphysiologicalresponses
AT lopezgalarzasalvador rootstockalleviatespeginducedwaterstressingraftedpepperseedlingsphysiologicalresponses
AT calatayudangeles rootstockalleviatespeginducedwaterstressingraftedpepperseedlingsphysiologicalresponses