Geography as non-genetic modulation factor of chicken cecal microbiota

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genoty...

Full description

Bibliographic Details
Main Authors: Pin Viso, Natalia Daniela, Redondo, Enzo Alejandro, Diaz Carrasco, Juan Maria, Redondo, Leandro Martin, Sabio Y Garcia, Julia Veronica, Fernandez Miyakawa, Mariano Enrique, Farber, Marisa Diana
Format: Artículo
Language:Inglés
Published: Public Library of Science 2021
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/9091
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244724
https://doi.org/10.1371/journal.pone.0244724
_version_ 1855484329164013568
author Pin Viso, Natalia Daniela
Redondo, Enzo Alejandro
Diaz Carrasco, Juan Maria
Redondo, Leandro Martin
Sabio Y Garcia, Julia Veronica
Fernandez Miyakawa, Mariano Enrique
Farber, Marisa Diana
author_browse Diaz Carrasco, Juan Maria
Farber, Marisa Diana
Fernandez Miyakawa, Mariano Enrique
Pin Viso, Natalia Daniela
Redondo, Enzo Alejandro
Redondo, Leandro Martin
Sabio Y Garcia, Julia Veronica
author_facet Pin Viso, Natalia Daniela
Redondo, Enzo Alejandro
Diaz Carrasco, Juan Maria
Redondo, Leandro Martin
Sabio Y Garcia, Julia Veronica
Fernandez Miyakawa, Mariano Enrique
Farber, Marisa Diana
author_sort Pin Viso, Natalia Daniela
collection INTA Digital
description The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term “local microbiota” as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.
format Artículo
id INTA9091
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher Public Library of Science
publisherStr Public Library of Science
record_format dspace
spelling INTA90912021-04-14T17:54:08Z Geography as non-genetic modulation factor of chicken cecal microbiota Pin Viso, Natalia Daniela Redondo, Enzo Alejandro Diaz Carrasco, Juan Maria Redondo, Leandro Martin Sabio Y Garcia, Julia Veronica Fernandez Miyakawa, Mariano Enrique Farber, Marisa Diana Chickens Microbial Flora Geographical Regions Pollo Flora Microbiana Regiones Geográficas Argentina Non Genetic Factors Factores no Genéticos Microbiota The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term “local microbiota” as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family. Instituto de Biotecnología Fil: Pin Viso, Natalia Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Pin Viso, Natalia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Redondo, Enzo Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina. Fil: Redondo, Enzo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Díaz Carrasco, Juan María. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Díaz Carrasco, Juan María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Redondo, Leandro Martí­n. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Redondo, Leandro Martí­n. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sabio Y Garcia, Julia Veronica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Sabio Y Garcia, Julia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fernandez Miyakawa, Mariano Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentina Fil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Farber, Marisa Diana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Farber, Marisa Diana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2021-04-14T17:46:43Z 2021-04-14T17:46:43Z 2021-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/9091 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244724 1932-6203 https://doi.org/10.1371/journal.pone.0244724 eng info:eu-repograntAgreement/INTA/PNBIO-1131043/AR./Bioinformática y Estadística Genómica. info:eu-repograntAgreement/INTA/PNSA-1115056/AR./Enfermedades infecciosas de las aves. info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Public Library of Science PLoS ONE 16 (1) : e0244724 (Enero 2021)
spellingShingle Chickens
Microbial Flora
Geographical Regions
Pollo
Flora Microbiana
Regiones Geográficas
Argentina
Non Genetic Factors
Factores no Genéticos
Microbiota
Pin Viso, Natalia Daniela
Redondo, Enzo Alejandro
Diaz Carrasco, Juan Maria
Redondo, Leandro Martin
Sabio Y Garcia, Julia Veronica
Fernandez Miyakawa, Mariano Enrique
Farber, Marisa Diana
Geography as non-genetic modulation factor of chicken cecal microbiota
title Geography as non-genetic modulation factor of chicken cecal microbiota
title_full Geography as non-genetic modulation factor of chicken cecal microbiota
title_fullStr Geography as non-genetic modulation factor of chicken cecal microbiota
title_full_unstemmed Geography as non-genetic modulation factor of chicken cecal microbiota
title_short Geography as non-genetic modulation factor of chicken cecal microbiota
title_sort geography as non genetic modulation factor of chicken cecal microbiota
topic Chickens
Microbial Flora
Geographical Regions
Pollo
Flora Microbiana
Regiones Geográficas
Argentina
Non Genetic Factors
Factores no Genéticos
Microbiota
url http://hdl.handle.net/20.500.12123/9091
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244724
https://doi.org/10.1371/journal.pone.0244724
work_keys_str_mv AT pinvisonataliadaniela geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT redondoenzoalejandro geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT diazcarrascojuanmaria geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT redondoleandromartin geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT sabioygarciajuliaveronica geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT fernandezmiyakawamarianoenrique geographyasnongeneticmodulationfactorofchickencecalmicrobiota
AT farbermarisadiana geographyasnongeneticmodulationfactorofchickencecalmicrobiota