Effect of butanol and salt concentration on solid-state nanopores resistance

The objective of this study was to demonstrate the possibility of using 1-butanol to reliably detect the open-pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid...

Full description

Bibliographic Details
Main Authors: Vega, Milena, Perez, Maximiliano, Granell, Pablo, Golmar, Federico, Wloka, Carsten, Maglia, Giovanni, Dieguez, Maria Jose, Del Valle, Eva María, Lasorsa, Carlos, Lerner, Betiana
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Taylor & Francis 2021
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/8724
https://www.tandfonline.com/doi/full/10.1080/23312009.2016.1225345
https://doi.org/10.1080/23312009.2016.1225345
_version_ 1855036087233150976
author Vega, Milena
Perez, Maximiliano
Granell, Pablo
Golmar, Federico
Wloka, Carsten
Maglia, Giovanni
Dieguez, Maria Jose
Del Valle, Eva María
Lasorsa, Carlos
Lerner, Betiana
author_browse Del Valle, Eva María
Dieguez, Maria Jose
Golmar, Federico
Granell, Pablo
Lasorsa, Carlos
Lerner, Betiana
Maglia, Giovanni
Perez, Maximiliano
Vega, Milena
Wloka, Carsten
author_facet Vega, Milena
Perez, Maximiliano
Granell, Pablo
Golmar, Federico
Wloka, Carsten
Maglia, Giovanni
Dieguez, Maria Jose
Del Valle, Eva María
Lasorsa, Carlos
Lerner, Betiana
author_sort Vega, Milena
collection INTA Digital
description The objective of this study was to demonstrate the possibility of using 1-butanol to reliably detect the open-pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid (HCl). Since nanopores produced by this method are deeper than those made in nanometer-thick membranes, they behave as nanochannels. As a consequence, the open-pore current detection is more challenging. Thus, we report that low amounts of butanol considerably aid in the detection of the open-pore current of nanopores.
format info:ar-repo/semantics/artículo
id INTA8724
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher Taylor & Francis
publisherStr Taylor & Francis
record_format dspace
spelling INTA87242021-02-23T12:56:07Z Effect of butanol and salt concentration on solid-state nanopores resistance Vega, Milena Perez, Maximiliano Granell, Pablo Golmar, Federico Wloka, Carsten Maglia, Giovanni Dieguez, Maria Jose Del Valle, Eva María Lasorsa, Carlos Lerner, Betiana Silicon Resistance to Chemicals Silicio Butanol Resistencia a Productos Químicos Nanopores Nanoporos The objective of this study was to demonstrate the possibility of using 1-butanol to reliably detect the open-pore current of pyramidal solid-state nanopores produced in silicon wafers. The nanopores were produced through controlled pore formation by neutralizing an etchant (KOH) with a strong acid (HCl). Since nanopores produced by this method are deeper than those made in nanometer-thick membranes, they behave as nanochannels. As a consequence, the open-pore current detection is more challenging. Thus, we report that low amounts of butanol considerably aid in the detection of the open-pore current of nanopores. Instituto de Genética Fil: Vega, Milena. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina. Universidad de Salamanca. Departamento de Ingeniería Química; España Fil: Perez, Maximiliano. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: Granell, Pablo. Instituto Nacional de Tecnología Industrial; Argentina Fil: Golmar, Federico. Instituto Nacional de Tecnología Industrial; Argentina Fil: Wloka, Carsten. University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute; Países Bajos Fil: Maglia, Giovanni. University of Groningen. Groningen Biomolecular Sciences and Biotechnology Institute; Países Bajos Fil: Dieguez, María José. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Genética; Argentina Fil: Del Valle, Eva María. Universidad de Salamanca. Departamento de Ingeniería Química; España Fil: Lasorsa, Carlos. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina Fil: Lerner, Betiana. Universidad Tecnológica Nacional. Facultad Regional Haedo; Argentina 2021-02-23T12:51:35Z 2021-02-23T12:51:35Z 2016-09 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/8724 https://www.tandfonline.com/doi/full/10.1080/23312009.2016.1225345 2331-2009 https://doi.org/10.1080/23312009.2016.1225345 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Taylor & Francis Cogent Chemistry 2 (1) : 1225345 (Septiembre 2016)
spellingShingle Silicon
Resistance to Chemicals
Silicio
Butanol
Resistencia a Productos Químicos
Nanopores
Nanoporos
Vega, Milena
Perez, Maximiliano
Granell, Pablo
Golmar, Federico
Wloka, Carsten
Maglia, Giovanni
Dieguez, Maria Jose
Del Valle, Eva María
Lasorsa, Carlos
Lerner, Betiana
Effect of butanol and salt concentration on solid-state nanopores resistance
title Effect of butanol and salt concentration on solid-state nanopores resistance
title_full Effect of butanol and salt concentration on solid-state nanopores resistance
title_fullStr Effect of butanol and salt concentration on solid-state nanopores resistance
title_full_unstemmed Effect of butanol and salt concentration on solid-state nanopores resistance
title_short Effect of butanol and salt concentration on solid-state nanopores resistance
title_sort effect of butanol and salt concentration on solid state nanopores resistance
topic Silicon
Resistance to Chemicals
Silicio
Butanol
Resistencia a Productos Químicos
Nanopores
Nanoporos
url http://hdl.handle.net/20.500.12123/8724
https://www.tandfonline.com/doi/full/10.1080/23312009.2016.1225345
https://doi.org/10.1080/23312009.2016.1225345
work_keys_str_mv AT vegamilena effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT perezmaximiliano effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT granellpablo effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT golmarfederico effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT wlokacarsten effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT magliagiovanni effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT dieguezmariajose effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT delvalleevamaria effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT lasorsacarlos effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance
AT lernerbetiana effectofbutanolandsaltconcentrationonsolidstatenanoporesresistance