Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements

Study region: The Pampas region is located in the central-east part of Argentina, and is one of the most productive agricultural regions of the world under rainfed conditions. Study focus: This study aims at examining how different Land Surface Models (LSMs) and satellite estimations reproduce dail...

Descripción completa

Detalles Bibliográficos
Autores principales: Spennemann, Pablo C., Fernández-Long, María Elena, Gattinoni, Natalia Noemí, Cammalleri, Carmelo, Naumann, Gustavo
Formato: Artículo
Lenguaje:Inglés
Publicado: Elsevier 2020
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/8138
https://www.sciencedirect.com/science/article/pii/S221458182030197X
https://doi.org/10.1016/j.ejrh.2020.100723
_version_ 1855484140654166016
author Spennemann, Pablo C.
Fernández-Long, María Elena
Gattinoni, Natalia Noemí
Cammalleri, Carmelo
Naumann, Gustavo
author_browse Cammalleri, Carmelo
Fernández-Long, María Elena
Gattinoni, Natalia Noemí
Naumann, Gustavo
Spennemann, Pablo C.
author_facet Spennemann, Pablo C.
Fernández-Long, María Elena
Gattinoni, Natalia Noemí
Cammalleri, Carmelo
Naumann, Gustavo
author_sort Spennemann, Pablo C.
collection INTA Digital
description Study region: The Pampas region is located in the central-east part of Argentina, and is one of the most productive agricultural regions of the world under rainfed conditions. Study focus: This study aims at examining how different Land Surface Models (LSMs) and satellite estimations reproduce daily surface and root zone soil moisture variability over 8 in-situ observation sites. The ability of the LSMs to detect dry and wet events is also evaluated. New hydrological insights for the region: The surface and root zone soil moisture of the LSMs and the surface soil moisture of the ESA CCI (European Space Agency Climate Change Initiative, hereafter ESA-SM) show in general a good performance against the in-situ measurements. In particular, the BHOA (Balance Hidrológico Operativo para el Agro) shows the best representation of the soil moisture dynamic range and variability, and the GLDAS (Global Land Data Assimilation System)-Noah, ERA-Interim TESSEL (Tiled ECMWF’s Scheme for Surface Exchanges over Land) and Global Drought Observatory (GDO)-LISFLOOD are able to adequately represent the soil moisture anomalies over the Pampas region. In addition to the LSM results, also the ESASM satellite estimated anomalies proved to be valuable. However, the LSMs and the ESA-SM have difficulties in reproducing the soil moisture frequency distributions. Based on this study, it is clear that accurate forcing data and soil parameters are critical to substantially improve the ability of LSMs to detect dry and wet events.
format Artículo
id INTA8138
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA81382020-10-27T20:09:46Z Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements Spennemann, Pablo C. Fernández-Long, María Elena Gattinoni, Natalia Noemí Cammalleri, Carmelo Naumann, Gustavo Soil Water Content Evaluation Satellites Contenido de Agua en el Suelo Evaluación Satélites Land Surface Models Estimations Modelos de Superficie Terrestre Estimaciones Región Pampeana Study region: The Pampas region is located in the central-east part of Argentina, and is one of the most productive agricultural regions of the world under rainfed conditions. Study focus: This study aims at examining how different Land Surface Models (LSMs) and satellite estimations reproduce daily surface and root zone soil moisture variability over 8 in-situ observation sites. The ability of the LSMs to detect dry and wet events is also evaluated. New hydrological insights for the region: The surface and root zone soil moisture of the LSMs and the surface soil moisture of the ESA CCI (European Space Agency Climate Change Initiative, hereafter ESA-SM) show in general a good performance against the in-situ measurements. In particular, the BHOA (Balance Hidrológico Operativo para el Agro) shows the best representation of the soil moisture dynamic range and variability, and the GLDAS (Global Land Data Assimilation System)-Noah, ERA-Interim TESSEL (Tiled ECMWF’s Scheme for Surface Exchanges over Land) and Global Drought Observatory (GDO)-LISFLOOD are able to adequately represent the soil moisture anomalies over the Pampas region. In addition to the LSM results, also the ESASM satellite estimated anomalies proved to be valuable. However, the LSMs and the ESA-SM have difficulties in reproducing the soil moisture frequency distributions. Based on this study, it is clear that accurate forcing data and soil parameters are critical to substantially improve the ability of LSMs to detect dry and wet events. Fil: Spennemann, P.C. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Servicio Meteorológico Nacional; Argentina Universidad Nacional de Tres de Febrero; Argentina Fil: Fernández - Long, M.E. Universidad de Buenos Aires. Facultad de Agronomía; Argentina Fil: Gattinoni, Natalia N. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina Fil: Cammalleri, C. European Commission, Joint Research Centre; Italia Fil: Naumann, G. European Commission, Joint Research Centre; Italia 2020-10-27T19:55:18Z 2020-10-27T19:55:18Z 2020-08-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/8138 https://www.sciencedirect.com/science/article/pii/S221458182030197X 2214-5818 https://doi.org/10.1016/j.ejrh.2020.100723 eng The Inter-American Institute for Global Change Research (IAI) CRN3035, which is supported by the U.S. National Science Foundation (Grant GEO-1128040) info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Journal of Hydrology : Regional Studies 31 : 100723 (October 2020)
spellingShingle Soil Water Content
Evaluation
Satellites
Contenido de Agua en el Suelo
Evaluación
Satélites
Land Surface Models
Estimations
Modelos de Superficie Terrestre
Estimaciones
Región Pampeana
Spennemann, Pablo C.
Fernández-Long, María Elena
Gattinoni, Natalia Noemí
Cammalleri, Carmelo
Naumann, Gustavo
Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title_full Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title_fullStr Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title_full_unstemmed Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title_short Soil moisture evaluation over the Argentine Pampas using models satellite estimations and in - situ measurements
title_sort soil moisture evaluation over the argentine pampas using models satellite estimations and in situ measurements
topic Soil Water Content
Evaluation
Satellites
Contenido de Agua en el Suelo
Evaluación
Satélites
Land Surface Models
Estimations
Modelos de Superficie Terrestre
Estimaciones
Región Pampeana
url http://hdl.handle.net/20.500.12123/8138
https://www.sciencedirect.com/science/article/pii/S221458182030197X
https://doi.org/10.1016/j.ejrh.2020.100723
work_keys_str_mv AT spennemannpabloc soilmoistureevaluationovertheargentinepampasusingmodelssatelliteestimationsandinsitumeasurements
AT fernandezlongmariaelena soilmoistureevaluationovertheargentinepampasusingmodelssatelliteestimationsandinsitumeasurements
AT gattinoninatalianoemi soilmoistureevaluationovertheargentinepampasusingmodelssatelliteestimationsandinsitumeasurements
AT cammallericarmelo soilmoistureevaluationovertheargentinepampasusingmodelssatelliteestimationsandinsitumeasurements
AT naumanngustavo soilmoistureevaluationovertheargentinepampasusingmodelssatelliteestimationsandinsitumeasurements