Does the photo-thermal environment limit post-flowering maize growth?
After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is,...
| Autores principales: | , , , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2020
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/7386 https://www.sciencedirect.com/science/article/abs/pii/S0378429019320076 https://doi.org/10.1016/j.fcr.2020.107805 |
| _version_ | 1855035848535310336 |
|---|---|
| author | Bonelli, Lucas Emmanuel Cerrudo, Aníbal Alejandro Olmedo Pico, Belen Di Matteo, Javier. A Monzon, Juan Pablo Rizzalli, Roberto Héctor Andrade, Fernando Hector |
| author_browse | Andrade, Fernando Hector Bonelli, Lucas Emmanuel Cerrudo, Aníbal Alejandro Di Matteo, Javier. A Monzon, Juan Pablo Olmedo Pico, Belen Rizzalli, Roberto Héctor |
| author_facet | Bonelli, Lucas Emmanuel Cerrudo, Aníbal Alejandro Olmedo Pico, Belen Di Matteo, Javier. A Monzon, Juan Pablo Rizzalli, Roberto Héctor Andrade, Fernando Hector |
| author_sort | Bonelli, Lucas Emmanuel |
| collection | INTA Digital |
| description | After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps. |
| format | info:ar-repo/semantics/artículo |
| id | INTA7386 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2020 |
| publishDateRange | 2020 |
| publishDateSort | 2020 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | INTA73862020-06-09T18:48:59Z Does the photo-thermal environment limit post-flowering maize growth? Bonelli, Lucas Emmanuel Cerrudo, Aníbal Alejandro Olmedo Pico, Belen Di Matteo, Javier. A Monzon, Juan Pablo Rizzalli, Roberto Héctor Andrade, Fernando Hector Maíz Floración Crecimiento Radiación Térmica Rendimiento de Cultivos Maize Flowering Growth Thermal Radiation Crop Yield After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps. EEA Balcarce Fil: Bonelli, Lucas Emmanuel. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cerrudo, Aníbal Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Olmedo Pico, Lía Belén. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina. Purdue University. Departament of Agronomy; Estados Unidos Fil: Di Matteo, Javier. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Monzon, Juan Pablo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rizzalli, Roberto Héctor. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Andrade, Fernando Héctor. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. . Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina 2020-06-09T18:33:40Z 2020-06-09T18:33:40Z 2020-07-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/7386 https://www.sciencedirect.com/science/article/abs/pii/S0378429019320076 0378-4290 https://doi.org/10.1016/j.fcr.2020.107805 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Field Crops Research 252 : 107805 (2020) |
| spellingShingle | Maíz Floración Crecimiento Radiación Térmica Rendimiento de Cultivos Maize Flowering Growth Thermal Radiation Crop Yield Bonelli, Lucas Emmanuel Cerrudo, Aníbal Alejandro Olmedo Pico, Belen Di Matteo, Javier. A Monzon, Juan Pablo Rizzalli, Roberto Héctor Andrade, Fernando Hector Does the photo-thermal environment limit post-flowering maize growth? |
| title | Does the photo-thermal environment limit post-flowering maize growth? |
| title_full | Does the photo-thermal environment limit post-flowering maize growth? |
| title_fullStr | Does the photo-thermal environment limit post-flowering maize growth? |
| title_full_unstemmed | Does the photo-thermal environment limit post-flowering maize growth? |
| title_short | Does the photo-thermal environment limit post-flowering maize growth? |
| title_sort | does the photo thermal environment limit post flowering maize growth |
| topic | Maíz Floración Crecimiento Radiación Térmica Rendimiento de Cultivos Maize Flowering Growth Thermal Radiation Crop Yield |
| url | http://hdl.handle.net/20.500.12123/7386 https://www.sciencedirect.com/science/article/abs/pii/S0378429019320076 https://doi.org/10.1016/j.fcr.2020.107805 |
| work_keys_str_mv | AT bonellilucasemmanuel doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT cerrudoanibalalejandro doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT olmedopicobelen doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT dimatteojaviera doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT monzonjuanpablo doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT rizzallirobertohector doesthephotothermalenvironmentlimitpostfloweringmaizegrowth AT andradefernandohector doesthephotothermalenvironmentlimitpostfloweringmaizegrowth |