Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP

Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach(ssGBLUP) allows genomic prediction to takeinto account both...

Full description

Bibliographic Details
Main Authors: Cappa, Eduardo Pablo, de Lima, Bruno Marco, Silva-Junior, Orzenil B. da, García, Carla C., Mansfield, Shawn D., Grattapaglia, Dario
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Elsevier 2019
Subjects:
Online Access:https://www.sciencedirect.com/science/article/pii/S0168945218314134
http://hdl.handle.net/20.500.12123/6227
https://doi.org/10.1016/j.plantsci.2019.03.017
_version_ 1855035637881634816
author Cappa, Eduardo Pablo
de Lima, Bruno Marco
Silva-Junior, Orzenil B. da
García, Carla C.
Mansfield, Shawn D.
Grattapaglia, Dario
author_browse Cappa, Eduardo Pablo
García, Carla C.
Grattapaglia, Dario
Mansfield, Shawn D.
Silva-Junior, Orzenil B. da
de Lima, Bruno Marco
author_facet Cappa, Eduardo Pablo
de Lima, Bruno Marco
Silva-Junior, Orzenil B. da
García, Carla C.
Mansfield, Shawn D.
Grattapaglia, Dario
author_sort Cappa, Eduardo Pablo
collection INTA Digital
description Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach(ssGBLUP) allows genomic prediction to takeinto account both genotyped and nongenotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice.
format info:ar-repo/semantics/artículo
id INTA6227
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA62272019-10-29T14:13:41Z Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP Cappa, Eduardo Pablo de Lima, Bruno Marco Silva-Junior, Orzenil B. da García, Carla C. Mansfield, Shawn D. Grattapaglia, Dario Eucalyptus Evaluación Información Fenotípico Genomic Features Evaluation Phenotypic Information Genetics Genética Accuracy Bias Sesgo de Precisión Características Genómicas Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach(ssGBLUP) allows genomic prediction to takeinto account both genotyped and nongenotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice. Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Lima, Bruno Marco. FIBRIA S.A. Technology Center; Brasil Fil: Silva-Junior, Orzenil B. da. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasilia. Programa de Ciencias Genéticas y Biotecnología; Brasil Fil: García, Carla C. International Paper of Brazil; Brasil Fil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; Canadá Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasilia. Programa de Ciencias Genéticas y Biotecnología; Brasil 2019-10-29T13:54:32Z 2019-10-29T13:54:32Z 2019-03-28 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://www.sciencedirect.com/science/article/pii/S0168945218314134 http://hdl.handle.net/20.500.12123/6227 0168-9452 https://doi.org/10.1016/j.plantsci.2019.03.017 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Plant Science 284 : 9-15 (July 2019)
spellingShingle Eucalyptus
Evaluación
Información Fenotípico
Genomic Features
Evaluation
Phenotypic Information
Genetics
Genética
Accuracy Bias
Sesgo de Precisión
Características Genómicas
Cappa, Eduardo Pablo
de Lima, Bruno Marco
Silva-Junior, Orzenil B. da
García, Carla C.
Mansfield, Shawn D.
Grattapaglia, Dario
Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title_full Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title_fullStr Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title_full_unstemmed Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title_short Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP
title_sort improving genomic prediction of growth and wood traits in eucalyptus using phenotypes from non genotyped trees by single step gblup
topic Eucalyptus
Evaluación
Información Fenotípico
Genomic Features
Evaluation
Phenotypic Information
Genetics
Genética
Accuracy Bias
Sesgo de Precisión
Características Genómicas
url https://www.sciencedirect.com/science/article/pii/S0168945218314134
http://hdl.handle.net/20.500.12123/6227
https://doi.org/10.1016/j.plantsci.2019.03.017
work_keys_str_mv AT cappaeduardopablo improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup
AT delimabrunomarco improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup
AT silvajuniororzenilbda improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup
AT garciacarlac improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup
AT mansfieldshawnd improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup
AT grattapagliadario improvinggenomicpredictionofgrowthandwoodtraitsineucalyptususingphenotypesfromnongenotypedtreesbysinglestepgblup