Can edaphic variables improve DTPA-Based zinc diagnosis in corn?

Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1)...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbieri, Pablo, Sainz Rozas, Hernan Rene, Wingaard, Nicolás, Eyherabide, Mercedes, Reussi Calvo, Nahuel Ignacio, Salvagiotti, Fernando, Correndo, Adrián A., Barbagelata, Pedro Anibal, Espósito Goya, Gabriel Pablo, Colazo, Juan Cruz, Echeverria, Hernan Eduardo
Formato: Artículo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/618
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.0316
https://doi.org/10.2136/sssaj2016.09.0316
_version_ 1855482755028090880
author Barbieri, Pablo
Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
author_browse Barbagelata, Pedro Anibal
Barbieri, Pablo
Colazo, Juan Cruz
Correndo, Adrián A.
Echeverria, Hernan Eduardo
Espósito Goya, Gabriel Pablo
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Sainz Rozas, Hernan Rene
Salvagiotti, Fernando
Wingaard, Nicolás
author_facet Barbieri, Pablo
Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
author_sort Barbieri, Pablo
collection INTA Digital
description Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers.
format Artículo
id INTA618
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2017
publishDateRange 2017
publishDateSort 2017
record_format dspace
spelling INTA6182024-08-21T13:15:58Z Can edaphic variables improve DTPA-Based zinc diagnosis in corn? Barbieri, Pablo Sainz Rozas, Hernan Rene Wingaard, Nicolás Eyherabide, Mercedes Reussi Calvo, Nahuel Ignacio Salvagiotti, Fernando Correndo, Adrián A. Barbagelata, Pedro Anibal Espósito Goya, Gabriel Pablo Colazo, Juan Cruz Echeverria, Hernan Eduardo Maíz Maize Zinc Soil Cinc Suelo Variables Edáficas Current zinc (Zn) diagnostic methods for corn (Zea mays L.) are often based on soil DTPA (diethylenetriamine-pentaacetic acid) extractable Zn (DTPA-Zn). However, calibration of the DTPA-Zn test may be influenced by other soil properties such as pH, organic matter (SOM) and available Bray-P (PBray-1). Our objective was to assess the contribution of soil properties to a DTPA-Zn model used to predict corn response to Zn fertilization. We conducted 64 field trials with two Zn-fertilization treatments: with and without Zn fertilization. In all sites, we measured SOM, PBray-1, pH, and DTPA-Zn at 0- to 20-cm depth before sowing. Yield difference between Zn-fertilized and unfertilized treatments (Ydifference) was significant in 33% of the experimental site-years. In responsive site-years, the average Ydifference was 0.98 Mg ha-1 (11.4%). Soil organic matter was the only property that was a significant addition to the DTPA-Zn model for predicting the corn relative yield (Model R2 including SOM = 0.27). However, the improvement was nominal (Partial R2 of SOM = 0.06). Use of DTPA-Zn alone was suitable to discriminate Zn responsiveness among site-years based on the Ydifference by correctly diagnosing 81% of the outcomes. We determined three soil DPTA-Zn ranges with different probability of resulting in a Ydifference greater than zero when fertilized with Zn: high (<0.9 mg kg-1), medium (0.9–1.3 mg kg-1), and low (>1.3 mg kg-1). These soil-test-based Zn recommendations improve the identification of Zn-deficient soils allowing prevention of yield loss from Zn deficiency and more rational use of Zn fertilizers. EEA Balcarce Fil: Barbieri, Pablo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sainz Rozas, Hernan Rene. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Wyngaard, Nicolás. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Eyherabide, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Fil: Reussi Calvo, Nahuel Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fertilab; Argentina Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Correndo, Adrián A. International Plant Nutrition Institute, Cono Sur; Argentina Fil: Barbagelata, Pedro Anibal. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina Fil: Espósito Goya, Gabriel P. Universidad Nacional de Río Cuarto; Argentina Fil: Colazo, Juan Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; Argentina Fil: Echeverria, Hernan Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Unidad Integrada. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina 2017-07-10T13:01:34Z 2017-07-10T13:01:34Z 2017-06-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://hdl.handle.net/20.500.12123/618 https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.0316 1435-0661 https://doi.org/10.2136/sssaj2016.09.0316 eng info:eu-repo/semantics/restrictedAccess application/pdf Soil Science Society of America journal 81 (3) : 556-563. (2017)
spellingShingle Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
Barbieri, Pablo
Sainz Rozas, Hernan Rene
Wingaard, Nicolás
Eyherabide, Mercedes
Reussi Calvo, Nahuel Ignacio
Salvagiotti, Fernando
Correndo, Adrián A.
Barbagelata, Pedro Anibal
Espósito Goya, Gabriel Pablo
Colazo, Juan Cruz
Echeverria, Hernan Eduardo
Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_full Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_fullStr Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_full_unstemmed Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_short Can edaphic variables improve DTPA-Based zinc diagnosis in corn?
title_sort can edaphic variables improve dtpa based zinc diagnosis in corn
topic Maíz
Maize
Zinc
Soil
Cinc
Suelo
Variables Edáficas
url http://hdl.handle.net/20.500.12123/618
https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.09.0316
https://doi.org/10.2136/sssaj2016.09.0316
work_keys_str_mv AT barbieripablo canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT sainzrozashernanrene canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT wingaardnicolas canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT eyherabidemercedes canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT reussicalvonahuelignacio canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT salvagiottifernando canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT correndoadriana canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT barbagelatapedroanibal canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT espositogoyagabrielpablo canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT colazojuancruz canedaphicvariablesimprovedtpabasedzincdiagnosisincorn
AT echeverriahernaneduardo canedaphicvariablesimprovedtpabasedzincdiagnosisincorn