Predicting maize phenology: intercomparison of functions for developmental response to temperature

Accurate prediction of phenological development in maize (Zea mays L.) is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumudini, S., Andrade, Fernando Hector, Boote, K.J., Brown, G.A., Dzotsi, K.A., Edmeades, G.O., Gocken, T., Goodwin, M., Halter, A.L., Hammer, G.L., Hatfield, J.L., Jones, J.W., Kemanian, A.R., Kim, Sung Hyun, Kiniry, J., Lizaso, J.I., Nendel, C., Nielsen, R.L., Parent, B., Stӧckle, C.O., Tardieu, F., Thomison, P.R., Timlin, D.J., Vyn, T.J., Wallach, D., Yang, H.S., Tollenaar, Matthijs
Formato: Artículo
Lenguaje:Inglés
Publicado: American Society of Agronomy 2019
Materias:
Acceso en línea:https://dl.sciencesocieties.org/publications/aj/abstracts/106/6/2087
http://hdl.handle.net/20.500.12123/5475
https://doi.org/10.2134/agronj14.0200
_version_ 1855483629846659072
author Kumudini, S.
Andrade, Fernando Hector
Boote, K.J.
Brown, G.A.
Dzotsi, K.A.
Edmeades, G.O.
Gocken, T.
Goodwin, M.
Halter, A.L.
Hammer, G.L.
Hatfield, J.L.
Jones, J.W.
Kemanian, A.R.
Kim, Sung Hyun
Kiniry, J.
Lizaso, J.I.
Nendel, C.
Nielsen, R.L.
Parent, B.
Stӧckle, C.O.
Tardieu, F.
Thomison, P.R.
Timlin, D.J.
Vyn, T.J.
Wallach, D.
Yang, H.S.
Tollenaar, Matthijs
author_browse Andrade, Fernando Hector
Boote, K.J.
Brown, G.A.
Dzotsi, K.A.
Edmeades, G.O.
Gocken, T.
Goodwin, M.
Halter, A.L.
Hammer, G.L.
Hatfield, J.L.
Jones, J.W.
Kemanian, A.R.
Kim, Sung Hyun
Kiniry, J.
Kumudini, S.
Lizaso, J.I.
Nendel, C.
Nielsen, R.L.
Parent, B.
Stӧckle, C.O.
Tardieu, F.
Thomison, P.R.
Timlin, D.J.
Tollenaar, Matthijs
Vyn, T.J.
Wallach, D.
Yang, H.S.
author_facet Kumudini, S.
Andrade, Fernando Hector
Boote, K.J.
Brown, G.A.
Dzotsi, K.A.
Edmeades, G.O.
Gocken, T.
Goodwin, M.
Halter, A.L.
Hammer, G.L.
Hatfield, J.L.
Jones, J.W.
Kemanian, A.R.
Kim, Sung Hyun
Kiniry, J.
Lizaso, J.I.
Nendel, C.
Nielsen, R.L.
Parent, B.
Stӧckle, C.O.
Tardieu, F.
Thomison, P.R.
Timlin, D.J.
Vyn, T.J.
Wallach, D.
Yang, H.S.
Tollenaar, Matthijs
author_sort Kumudini, S.
collection INTA Digital
description Accurate prediction of phenological development in maize (Zea mays L.) is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were (i) to evaluate the precision of eight thermal functions, (ii) to assess the effects of source data on the ability to differentiate among thermal functions, and (iii) to attribute the precision of thermal functions to their response across various temperature ranges. Data sets used in this study represent >1000 distinct maize hybrids, >50 geographic locations, and multiple planting dates and years. Thermal functions and calendar days were evaluated and grouped based on their temperature response and derivation as empirical linear, empirical nonlinear, and process-based functions. Precision in predicting phase durations from planting to anthesis or silking and from silking to physiological maturity was evaluated. Large data sets enabled increased differentiation of thermal functions, even when smaller data sets contained orthogonal, multi-location and -year data. At the highest level of differentiation, precision of thermal functions was in the order calendar days < empirical linear < process based < empirical nonlinear. Precision was associated with relatively low temperature sensitivity across the 10 to 26°C range. In contrast to other thermal functions, process-based functions were derived using supra-optimal temperatures, and consequently, they may better represent the developmental response of maize to supra-optimal temperatures. Supra-optimal temperatures could be more prevalent under future climate-change scenarios, but data sets in this study contained few data in that range.
format Artículo
id INTA5475
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher American Society of Agronomy
publisherStr American Society of Agronomy
record_format dspace
spelling INTA54752020-06-04T11:28:21Z Predicting maize phenology: intercomparison of functions for developmental response to temperature Kumudini, S. Andrade, Fernando Hector Boote, K.J. Brown, G.A. Dzotsi, K.A. Edmeades, G.O. Gocken, T. Goodwin, M. Halter, A.L. Hammer, G.L. Hatfield, J.L. Jones, J.W. Kemanian, A.R. Kim, Sung Hyun Kiniry, J. Lizaso, J.I. Nendel, C. Nielsen, R.L. Parent, B. Stӧckle, C.O. Tardieu, F. Thomison, P.R. Timlin, D.J. Vyn, T.J. Wallach, D. Yang, H.S. Tollenaar, Matthijs Maíz Fenología Temperatura Etapas de Desarrollo de la Planta Rendimiento Maize Phenology Temperature Plant Developmental Stages Yields Accurate prediction of phenological development in maize (Zea mays L.) is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were (i) to evaluate the precision of eight thermal functions, (ii) to assess the effects of source data on the ability to differentiate among thermal functions, and (iii) to attribute the precision of thermal functions to their response across various temperature ranges. Data sets used in this study represent >1000 distinct maize hybrids, >50 geographic locations, and multiple planting dates and years. Thermal functions and calendar days were evaluated and grouped based on their temperature response and derivation as empirical linear, empirical nonlinear, and process-based functions. Precision in predicting phase durations from planting to anthesis or silking and from silking to physiological maturity was evaluated. Large data sets enabled increased differentiation of thermal functions, even when smaller data sets contained orthogonal, multi-location and -year data. At the highest level of differentiation, precision of thermal functions was in the order calendar days < empirical linear < process based < empirical nonlinear. Precision was associated with relatively low temperature sensitivity across the 10 to 26°C range. In contrast to other thermal functions, process-based functions were derived using supra-optimal temperatures, and consequently, they may better represent the developmental response of maize to supra-optimal temperatures. Supra-optimal temperatures could be more prevalent under future climate-change scenarios, but data sets in this study contained few data in that range. EEA Balcarce Fil: Kumudini, S. The Climate Corp; Estados Unidos Fil: Andrade, Fernando Hector. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce-Unidad Integrada-Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Boote, K.J. University of Florida. Department of Agronomy; Estados Unidos Fil: Brown, G.A. Breaking Ground; Estados Unidos Fil: Dzotsi, K.A. University of Florida. Department of Agricultural and Biological Engineering; Estados Unidos Fil: Edmeades, G.O. Hemmans; Nueva Zelanda Fil: Gocken, T. Monsanto; Estados Unidos Fil: Goodwin, M. Monsanto; Estados Unidos Fil: Halter, A.L. Dupont-Pioneer; Estados Unidos Fil: Hammer, G.L. University of Queensland; Australia Fil: Hatfield, J.L. USDA-ARS. National Laboratory for Agriculture and the Environment; Estados Unidos Fil: Jones, J.W. University of Florida. Department of Agricultural and Biological Engineering; Estados Unidos Fil: Kemanian, A.R. Pennsylvania State University. Department of Plant Science; Estados Unidos Fil: Kim, Sung Hyun. University of Washington. College of the Environment. School of Environmental and Forest Sciences; Estados Unidos Fil: Kiniry, J. United States Department of Agriculture. ARS; Estados Unidos Fil: Lizaso, J.I. Universidad Politécnica de Madrid. Departamento de Producción Vegetal; España Fil: Nendel, C. Leibniz Centre for Agricultural Landscape Research. Institute of Landscape Systems Analysis; Alemania Fil: Nielsen, R.L. Purdue University. Department of Agronomy; Estados Unidos Fil: Parent, B. INRA. Laboratory d’Ecophysiologie des Plantes sous Stress Environnementaux; Francia Fil: Stӧckle, C.O. Washington State University. Biological Systems Engineering; Estados Unidos Fil: Tardieu, F. INRA. Laboratory d’Ecophysiologie des Plantes sous Stress Environnementaux; Francia Fil: Thomison, P.R. Ohio State University. Department of Horticulture and Crop Science; Estados Unidos Fil: Timlin, D.J. USDA-ARS. Crop Systems and Global Change Lab; Estados Unidos Fil: Vyn, T.J. Purdue University. Department of Agronomy; Estados Unidos Fil: Wallach, D. INRA. Agrosystèmes et développement territorial; Francia Fil: Yang, H.S. Universidad de Nebraska - Lincoln. Department of Agronomy and Horticulture; Estados Unidos Fil: Tollenaar, M. The Climate Corp; Estados Unidos 2019-07-11T13:02:04Z 2019-07-11T13:02:04Z 2014-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://dl.sciencesocieties.org/publications/aj/abstracts/106/6/2087 http://hdl.handle.net/20.500.12123/5475 0002-1962 1435-0645 https://doi.org/10.2134/agronj14.0200 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf American Society of Agronomy Agronomy Journal 106 (6) : 2087-2097 (2014)
spellingShingle Maíz
Fenología
Temperatura
Etapas de Desarrollo de la Planta
Rendimiento
Maize
Phenology
Temperature
Plant Developmental Stages
Yields
Kumudini, S.
Andrade, Fernando Hector
Boote, K.J.
Brown, G.A.
Dzotsi, K.A.
Edmeades, G.O.
Gocken, T.
Goodwin, M.
Halter, A.L.
Hammer, G.L.
Hatfield, J.L.
Jones, J.W.
Kemanian, A.R.
Kim, Sung Hyun
Kiniry, J.
Lizaso, J.I.
Nendel, C.
Nielsen, R.L.
Parent, B.
Stӧckle, C.O.
Tardieu, F.
Thomison, P.R.
Timlin, D.J.
Vyn, T.J.
Wallach, D.
Yang, H.S.
Tollenaar, Matthijs
Predicting maize phenology: intercomparison of functions for developmental response to temperature
title Predicting maize phenology: intercomparison of functions for developmental response to temperature
title_full Predicting maize phenology: intercomparison of functions for developmental response to temperature
title_fullStr Predicting maize phenology: intercomparison of functions for developmental response to temperature
title_full_unstemmed Predicting maize phenology: intercomparison of functions for developmental response to temperature
title_short Predicting maize phenology: intercomparison of functions for developmental response to temperature
title_sort predicting maize phenology intercomparison of functions for developmental response to temperature
topic Maíz
Fenología
Temperatura
Etapas de Desarrollo de la Planta
Rendimiento
Maize
Phenology
Temperature
Plant Developmental Stages
Yields
url https://dl.sciencesocieties.org/publications/aj/abstracts/106/6/2087
http://hdl.handle.net/20.500.12123/5475
https://doi.org/10.2134/agronj14.0200
work_keys_str_mv AT kumudinis predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT andradefernandohector predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT bootekj predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT brownga predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT dzotsika predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT edmeadesgo predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT gockent predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT goodwinm predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT halteral predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT hammergl predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT hatfieldjl predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT jonesjw predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT kemanianar predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT kimsunghyun predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT kiniryj predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT lizasoji predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT nendelc predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT nielsenrl predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT parentb predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT stöckleco predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT tardieuf predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT thomisonpr predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT timlindj predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT vyntj predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT wallachd predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT yanghs predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature
AT tollenaarmatthijs predictingmaizephenologyintercomparisonoffunctionsfordevelopmentalresponsetotemperature