Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina

This paper presents an object-based approach to mapping a set of landforms located in the fluvio-eolian plain of Rio Dulce and alluvial plain of Rio Salado (Dry Chaco, Argentina), with two Landsat 8 images collected in summer and winter combined with topographic data. The research was conducted in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Castillejo González, Isabel Luisa, Angueira, Maria Cristina, García Ferrer, Alfonso, Sánchez de la Orden, Manuel
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.mdpi.com/2220-9964/8/3/132
http://hdl.handle.net/20.500.12123/5306
https://doi.org/10.3390/ijgi8030132
_version_ 1855035475144736768
author Castillejo González, Isabel Luisa
Angueira, Maria Cristina
García Ferrer, Alfonso
Sánchez de la Orden, Manuel
author_browse Angueira, Maria Cristina
Castillejo González, Isabel Luisa
García Ferrer, Alfonso
Sánchez de la Orden, Manuel
author_facet Castillejo González, Isabel Luisa
Angueira, Maria Cristina
García Ferrer, Alfonso
Sánchez de la Orden, Manuel
author_sort Castillejo González, Isabel Luisa
collection INTA Digital
description This paper presents an object-based approach to mapping a set of landforms located in the fluvio-eolian plain of Rio Dulce and alluvial plain of Rio Salado (Dry Chaco, Argentina), with two Landsat 8 images collected in summer and winter combined with topographic data. The research was conducted in two stages. The first stage focused on basic-spectral landform classifications where both pixel- and object-based image analyses were tested with five classification algorithms: Mahalanobis Distance (MD), Spectral Angle Mapper (SAM), Maximum Likelihood (ML), Support Vector Machine (SVM) and Decision Tree (DT). The results obtained indicate that object-based analyses clearly outperform pixel-based classifications, with an increase in accuracy of up to 35%. The second stage focused on advanced object-based derived variables with topographic ancillary data classifications. The combinations of variables were tested in order to obtain the most accurate map of landforms based on the most successful classifiers identified in the previous stage (ML, SVM and DT). The results indicate that DT is the most accurate classifier, exhibiting the highest overall accuracies with values greater than 72% in both the winter and summer images. Future work could combine both, the most appropriate methodologies and combinations of variables obtained in this study, with physico-chemical variables sampled to improve the classification of landforms and even of types of soil.
format info:ar-repo/semantics/artículo
id INTA5306
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA53062019-06-12T15:02:47Z Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina Castillejo González, Isabel Luisa Angueira, Maria Cristina García Ferrer, Alfonso Sánchez de la Orden, Manuel Minería de Datos Accidentes Geográficos Imágenes por Satélites Cartografía Ecosistema Data Mining Landforms Satellite Imagery Cartography Ecosystems Mapeo Región Chaco Semiárido, Argentina Mapping This paper presents an object-based approach to mapping a set of landforms located in the fluvio-eolian plain of Rio Dulce and alluvial plain of Rio Salado (Dry Chaco, Argentina), with two Landsat 8 images collected in summer and winter combined with topographic data. The research was conducted in two stages. The first stage focused on basic-spectral landform classifications where both pixel- and object-based image analyses were tested with five classification algorithms: Mahalanobis Distance (MD), Spectral Angle Mapper (SAM), Maximum Likelihood (ML), Support Vector Machine (SVM) and Decision Tree (DT). The results obtained indicate that object-based analyses clearly outperform pixel-based classifications, with an increase in accuracy of up to 35%. The second stage focused on advanced object-based derived variables with topographic ancillary data classifications. The combinations of variables were tested in order to obtain the most accurate map of landforms based on the most successful classifiers identified in the previous stage (ML, SVM and DT). The results indicate that DT is the most accurate classifier, exhibiting the highest overall accuracies with values greater than 72% in both the winter and summer images. Future work could combine both, the most appropriate methodologies and combinations of variables obtained in this study, with physico-chemical variables sampled to improve the classification of landforms and even of types of soil. EEA Santiago del Estero Fil: Castillejo González, Isabel Luisa. Universidad de Córdoba. Departamento de Ingeniería Gráfica y Geomática; España Fil: Angueira, Maria Cristina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santiago del Estero; Argentina Fil: García Ferrer, Alfonso. Universidad de Córdoba. Departamento de Ingeniería Gráfica y Geomática; España Fil: Sánchez de la Orden, Manuel. Universidad de Córdoba. Departamento de Ingeniería Gráfica y Geomática; España 2019-06-12T15:00:57Z 2019-06-12T15:00:57Z 2019-03 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://www.mdpi.com/2220-9964/8/3/132 http://hdl.handle.net/20.500.12123/5306 2220-9964 https://doi.org/10.3390/ijgi8030132 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI ISPRS International Journal of Geo-Information 8 (3) : 132 (2019)
spellingShingle Minería de Datos
Accidentes Geográficos
Imágenes por Satélites
Cartografía
Ecosistema
Data Mining
Landforms
Satellite Imagery
Cartography
Ecosystems
Mapeo
Región Chaco Semiárido, Argentina
Mapping
Castillejo González, Isabel Luisa
Angueira, Maria Cristina
García Ferrer, Alfonso
Sánchez de la Orden, Manuel
Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title_full Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title_fullStr Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title_full_unstemmed Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title_short Combining object-based image analysis with topographic data for landform mapping: a case study in the semi-arid Chaco ecosystem, Argentina
title_sort combining object based image analysis with topographic data for landform mapping a case study in the semi arid chaco ecosystem argentina
topic Minería de Datos
Accidentes Geográficos
Imágenes por Satélites
Cartografía
Ecosistema
Data Mining
Landforms
Satellite Imagery
Cartography
Ecosystems
Mapeo
Región Chaco Semiárido, Argentina
Mapping
url https://www.mdpi.com/2220-9964/8/3/132
http://hdl.handle.net/20.500.12123/5306
https://doi.org/10.3390/ijgi8030132
work_keys_str_mv AT castillejogonzalezisabelluisa combiningobjectbasedimageanalysiswithtopographicdataforlandformmappingacasestudyinthesemiaridchacoecosystemargentina
AT angueiramariacristina combiningobjectbasedimageanalysiswithtopographicdataforlandformmappingacasestudyinthesemiaridchacoecosystemargentina
AT garciaferreralfonso combiningobjectbasedimageanalysiswithtopographicdataforlandformmappingacasestudyinthesemiaridchacoecosystemargentina
AT sanchezdelaordenmanuel combiningobjectbasedimageanalysiswithtopographicdataforlandformmappingacasestudyinthesemiaridchacoecosystemargentina