Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach

The presence of genotype-by-environment interactions (GE) remains a major issue for crop improvement. The aims of this work were: i) to compare the efficiency of parametric and non-parametric methods to test the presence of crossover (COI) and non-crossover GE (NCOI), ii) visual examination of the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Angelini, Julia, Faviere, Gabriela Soledad, Bortolotto, Eugenia Belén, Arroyo, Luis Enrique, Valentini, Gabriel Hugo, Cervigni, Gerardo Domingo Lucio
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.sciencedirect.com/science/article/pii/S0304423819301980
http://hdl.handle.net/20.500.12123/5213
https://doi.org/10.1016/j.scienta.2019.03.024
_version_ 1855035458228060160
author Angelini, Julia
Faviere, Gabriela Soledad
Bortolotto, Eugenia Belén
Arroyo, Luis Enrique
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
author_browse Angelini, Julia
Arroyo, Luis Enrique
Bortolotto, Eugenia Belén
Cervigni, Gerardo Domingo Lucio
Faviere, Gabriela Soledad
Valentini, Gabriel Hugo
author_facet Angelini, Julia
Faviere, Gabriela Soledad
Bortolotto, Eugenia Belén
Arroyo, Luis Enrique
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
author_sort Angelini, Julia
collection INTA Digital
description The presence of genotype-by-environment interactions (GE) remains a major issue for crop improvement. The aims of this work were: i) to compare the efficiency of parametric and non-parametric methods to test the presence of crossover (COI) and non-crossover GE (NCOI), ii) visual examination of the relationships between environments and genotypes tested, and iii) to test the effectiveness of dividing the peach season evaluations into mega-environments (ME) using the biplot based on AMMI and SREG. Non-parametric ANOVA was more useful than the parametric approach because it can distinguish between the presence of COI and NCOI. Three test methods, suitable for investigating two-factor interactions, were used to show that interactions between genotypes and environment involve significant changes in rank order. The Yang test based on mixed model theory combined with interaction-wise error rate was the most sensitive to detect COI, while the Gail and Simon, as well as the Azzalini and Cox methods were conservative. Which-won-where pattern was followed with four and two ME were found with AMMI and SREG, respectively. Entries G16 (Hermosillo P), G21 (María Emilia N), G2 (84.351.029 N) and G8 (Cotogna del Berti P) showed specific adaptability to ME-1, ME-2, ME-3 and ME-4 generated by AMMI, respectively; while G28 (Sunprince P) exhibited specific adaptation to ME-1 and G16 in ME-2 which were created by SREG. Average environment coordination (AEC) view of the GGE biplot involving the seven environments identified G10 (Flameprince P) as the most stable and high-yielding genotype across environments, unlike G8 and G28, which showed only high yields. Results indicated that AMMI and GGE biplots are informative methods to explore stability and adaptation patterns of genotypes in practical plant breeding and in subsequent variety recommendations. In addition, finding ME helps identify the most suitable peach genotypes that can be recommended for areas within a specific ME in either one or more test locations.
format info:ar-repo/semantics/artículo
id INTA5213
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA52132019-05-28T14:04:59Z Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach Angelini, Julia Faviere, Gabriela Soledad Bortolotto, Eugenia Belén Arroyo, Luis Enrique Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio Durazno Adaptación Rendimiento Interacción Genotipo Ambiente Análisis Multivariante Fitomejoramiento Métodos Estadísticos Peaches Adaptation Yields Genotype Environment Interaction Multivariate Analysis Plant Breeding Estatistical Methods The presence of genotype-by-environment interactions (GE) remains a major issue for crop improvement. The aims of this work were: i) to compare the efficiency of parametric and non-parametric methods to test the presence of crossover (COI) and non-crossover GE (NCOI), ii) visual examination of the relationships between environments and genotypes tested, and iii) to test the effectiveness of dividing the peach season evaluations into mega-environments (ME) using the biplot based on AMMI and SREG. Non-parametric ANOVA was more useful than the parametric approach because it can distinguish between the presence of COI and NCOI. Three test methods, suitable for investigating two-factor interactions, were used to show that interactions between genotypes and environment involve significant changes in rank order. The Yang test based on mixed model theory combined with interaction-wise error rate was the most sensitive to detect COI, while the Gail and Simon, as well as the Azzalini and Cox methods were conservative. Which-won-where pattern was followed with four and two ME were found with AMMI and SREG, respectively. Entries G16 (Hermosillo P), G21 (María Emilia N), G2 (84.351.029 N) and G8 (Cotogna del Berti P) showed specific adaptability to ME-1, ME-2, ME-3 and ME-4 generated by AMMI, respectively; while G28 (Sunprince P) exhibited specific adaptation to ME-1 and G16 in ME-2 which were created by SREG. Average environment coordination (AEC) view of the GGE biplot involving the seven environments identified G10 (Flameprince P) as the most stable and high-yielding genotype across environments, unlike G8 and G28, which showed only high yields. Results indicated that AMMI and GGE biplots are informative methods to explore stability and adaptation patterns of genotypes in practical plant breeding and in subsequent variety recommendations. In addition, finding ME helps identify the most suitable peach genotypes that can be recommended for areas within a specific ME in either one or more test locations. EEA San Pedro Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario; Argentina Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario; Argentina Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario; Argentina Fil: Arroyo, Luis Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina. Universidad Nacional de Rosario; Argentina 2019-05-28T13:05:36Z 2019-05-28T13:05:36Z 2019 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://www.sciencedirect.com/science/article/pii/S0304423819301980 http://hdl.handle.net/20.500.12123/5213 0304-4238 https://doi.org/10.1016/j.scienta.2019.03.024 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Scientia Horticulturae 252 : 298-309 (June 2019)
spellingShingle Durazno
Adaptación
Rendimiento
Interacción Genotipo Ambiente
Análisis Multivariante
Fitomejoramiento
Métodos Estadísticos
Peaches
Adaptation
Yields
Genotype Environment Interaction
Multivariate Analysis
Plant Breeding
Estatistical Methods
Angelini, Julia
Faviere, Gabriela Soledad
Bortolotto, Eugenia Belén
Arroyo, Luis Enrique
Valentini, Gabriel Hugo
Cervigni, Gerardo Domingo Lucio
Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title_full Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title_fullStr Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title_full_unstemmed Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title_short Biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype-by-environment interaction in peach
title_sort biplot pattern interaction analysis and statistical test for crossover and noncrossover genotype by environment interaction in peach
topic Durazno
Adaptación
Rendimiento
Interacción Genotipo Ambiente
Análisis Multivariante
Fitomejoramiento
Métodos Estadísticos
Peaches
Adaptation
Yields
Genotype Environment Interaction
Multivariate Analysis
Plant Breeding
Estatistical Methods
url https://www.sciencedirect.com/science/article/pii/S0304423819301980
http://hdl.handle.net/20.500.12123/5213
https://doi.org/10.1016/j.scienta.2019.03.024
work_keys_str_mv AT angelinijulia biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach
AT favieregabrielasoledad biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach
AT bortolottoeugeniabelen biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach
AT arroyoluisenrique biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach
AT valentinigabrielhugo biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach
AT cervignigerardodomingolucio biplotpatterninteractionanalysisandstatisticaltestforcrossoverandnoncrossovergenotypebyenvironmentinteractioninpeach