Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit

Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often appli...

Full description

Bibliographic Details
Main Authors: Lauxmann, Martín Alexander, Borsani, Julia, Osorio, Sonia, Lombardo, Veronica Andrea, Budde, Claudio Olaf, Bustamante, Claudia Anabel, Monti, Laura Lucía, Andreo, Carlos Santiago, Fernie, Alisdair R., Drincovich, María Fabiana, Lara, Maria Valeria
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Wiley 2019
Subjects:
Online Access:https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181
http://hdl.handle.net/20.500.12123/4998
https://doi.org/10.1111/pce.12181
_version_ 1855035421106372608
author Lauxmann, Martín Alexander
Borsani, Julia
Osorio, Sonia
Lombardo, Veronica Andrea
Budde, Claudio Olaf
Bustamante, Claudia Anabel
Monti, Laura Lucía
Andreo, Carlos Santiago
Fernie, Alisdair R.
Drincovich, María Fabiana
Lara, Maria Valeria
author_browse Andreo, Carlos Santiago
Borsani, Julia
Budde, Claudio Olaf
Bustamante, Claudia Anabel
Drincovich, María Fabiana
Fernie, Alisdair R.
Lara, Maria Valeria
Lauxmann, Martín Alexander
Lombardo, Veronica Andrea
Monti, Laura Lucía
Osorio, Sonia
author_facet Lauxmann, Martín Alexander
Borsani, Julia
Osorio, Sonia
Lombardo, Veronica Andrea
Budde, Claudio Olaf
Bustamante, Claudia Anabel
Monti, Laura Lucía
Andreo, Carlos Santiago
Fernie, Alisdair R.
Drincovich, María Fabiana
Lara, Maria Valeria
author_sort Lauxmann, Martín Alexander
collection INTA Digital
description Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.
format info:ar-repo/semantics/artículo
id INTA4998
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Wiley
publisherStr Wiley
record_format dspace
spelling INTA49982019-06-10T17:04:11Z Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit Lauxmann, Martín Alexander Borsani, Julia Osorio, Sonia Lombardo, Veronica Andrea Budde, Claudio Olaf Bustamante, Claudia Anabel Monti, Laura Lucía Andreo, Carlos Santiago Fernie, Alisdair R. Drincovich, María Fabiana Lara, Maria Valeria Durazno Prunus Persica Enfriamiento Calor Tecnología Postcosecha Peaches Cooling Heat Postharvest Technology Daños por el Frío Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs. EEA San Pedro Fil: Lauxmann, Martin Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Borsani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Osorio, Sonia. Max-Planck-Institut für Molekulare Pflanzenphysiologie; Alemania Fil:Lombardo, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Bustamante, Claudia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Monti, Laura Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Fernie, Alisdair R. Max-Planck-Institut für Molekulare Pflanzenphysiologie; Alemania Fil: Drincovich, Maria Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Lara, Maria Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina 2019-04-26T15:44:12Z 2019-04-26T15:44:12Z 2014-03 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181 http://hdl.handle.net/20.500.12123/4998 0140-7791 1365-3040 https://doi.org/10.1111/pce.12181 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Wiley Plant, Cell and Environment 37 (3) : 601-616 (March 2014)
spellingShingle Durazno
Prunus Persica
Enfriamiento
Calor
Tecnología Postcosecha
Peaches
Cooling
Heat
Postharvest Technology
Daños por el Frío
Lauxmann, Martín Alexander
Borsani, Julia
Osorio, Sonia
Lombardo, Veronica Andrea
Budde, Claudio Olaf
Bustamante, Claudia Anabel
Monti, Laura Lucía
Andreo, Carlos Santiago
Fernie, Alisdair R.
Drincovich, María Fabiana
Lara, Maria Valeria
Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title_full Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title_fullStr Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title_full_unstemmed Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title_short Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
title_sort deciphering the metabolic pathways influencing heat and cold responses during post harvest physiology of peach fruit
topic Durazno
Prunus Persica
Enfriamiento
Calor
Tecnología Postcosecha
Peaches
Cooling
Heat
Postharvest Technology
Daños por el Frío
url https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181
http://hdl.handle.net/20.500.12123/4998
https://doi.org/10.1111/pce.12181
work_keys_str_mv AT lauxmannmartinalexander decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT borsanijulia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT osoriosonia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT lombardoveronicaandrea decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT buddeclaudioolaf decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT bustamanteclaudiaanabel decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT montilauralucia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT andreocarlossantiago decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT ferniealisdairr decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT drincovichmariafabiana decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit
AT laramariavaleria decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit