Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit
Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often appli...
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | info:ar-repo/semantics/artículo |
| Language: | Inglés |
| Published: |
Wiley
2019
|
| Subjects: | |
| Online Access: | https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181 http://hdl.handle.net/20.500.12123/4998 https://doi.org/10.1111/pce.12181 |
| _version_ | 1855035421106372608 |
|---|---|
| author | Lauxmann, Martín Alexander Borsani, Julia Osorio, Sonia Lombardo, Veronica Andrea Budde, Claudio Olaf Bustamante, Claudia Anabel Monti, Laura Lucía Andreo, Carlos Santiago Fernie, Alisdair R. Drincovich, María Fabiana Lara, Maria Valeria |
| author_browse | Andreo, Carlos Santiago Borsani, Julia Budde, Claudio Olaf Bustamante, Claudia Anabel Drincovich, María Fabiana Fernie, Alisdair R. Lara, Maria Valeria Lauxmann, Martín Alexander Lombardo, Veronica Andrea Monti, Laura Lucía Osorio, Sonia |
| author_facet | Lauxmann, Martín Alexander Borsani, Julia Osorio, Sonia Lombardo, Veronica Andrea Budde, Claudio Olaf Bustamante, Claudia Anabel Monti, Laura Lucía Andreo, Carlos Santiago Fernie, Alisdair R. Drincovich, María Fabiana Lara, Maria Valeria |
| author_sort | Lauxmann, Martín Alexander |
| collection | INTA Digital |
| description | Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs. |
| format | info:ar-repo/semantics/artículo |
| id | INTA4998 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2019 |
| publishDateRange | 2019 |
| publishDateSort | 2019 |
| publisher | Wiley |
| publisherStr | Wiley |
| record_format | dspace |
| spelling | INTA49982019-06-10T17:04:11Z Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit Lauxmann, Martín Alexander Borsani, Julia Osorio, Sonia Lombardo, Veronica Andrea Budde, Claudio Olaf Bustamante, Claudia Anabel Monti, Laura Lucía Andreo, Carlos Santiago Fernie, Alisdair R. Drincovich, María Fabiana Lara, Maria Valeria Durazno Prunus Persica Enfriamiento Calor Tecnología Postcosecha Peaches Cooling Heat Postharvest Technology Daños por el Frío Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed ‘chilling injury’ (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. ‘Dixiland’ peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs. EEA San Pedro Fil: Lauxmann, Martin Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Borsani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Osorio, Sonia. Max-Planck-Institut für Molekulare Pflanzenphysiologie; Alemania Fil:Lombardo, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Bustamante, Claudia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Monti, Laura Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Fernie, Alisdair R. Max-Planck-Institut für Molekulare Pflanzenphysiologie; Alemania Fil: Drincovich, Maria Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Lara, Maria Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina 2019-04-26T15:44:12Z 2019-04-26T15:44:12Z 2014-03 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181 http://hdl.handle.net/20.500.12123/4998 0140-7791 1365-3040 https://doi.org/10.1111/pce.12181 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Wiley Plant, Cell and Environment 37 (3) : 601-616 (March 2014) |
| spellingShingle | Durazno Prunus Persica Enfriamiento Calor Tecnología Postcosecha Peaches Cooling Heat Postharvest Technology Daños por el Frío Lauxmann, Martín Alexander Borsani, Julia Osorio, Sonia Lombardo, Veronica Andrea Budde, Claudio Olaf Bustamante, Claudia Anabel Monti, Laura Lucía Andreo, Carlos Santiago Fernie, Alisdair R. Drincovich, María Fabiana Lara, Maria Valeria Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title | Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title_full | Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title_fullStr | Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title_full_unstemmed | Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title_short | Deciphering the metabolic pathways influencing heat and cold responses during post‐harvest physiology of peach fruit |
| title_sort | deciphering the metabolic pathways influencing heat and cold responses during post harvest physiology of peach fruit |
| topic | Durazno Prunus Persica Enfriamiento Calor Tecnología Postcosecha Peaches Cooling Heat Postharvest Technology Daños por el Frío |
| url | https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12181 http://hdl.handle.net/20.500.12123/4998 https://doi.org/10.1111/pce.12181 |
| work_keys_str_mv | AT lauxmannmartinalexander decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT borsanijulia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT osoriosonia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT lombardoveronicaandrea decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT buddeclaudioolaf decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT bustamanteclaudiaanabel decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT montilauralucia decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT andreocarlossantiago decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT ferniealisdairr decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT drincovichmariafabiana decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit AT laramariavaleria decipheringthemetabolicpathwaysinfluencingheatandcoldresponsesduringpostharvestphysiologyofpeachfruit |