Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis

Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individu...

Full description

Bibliographic Details
Main Authors: Rossi, Jean Pierre, Nardin, Maxime, Godefroid, Martin, Ruiz Diaz, Manuela, Sergent, Anne Sophie, Martinez Meier, Alejandro, Paques, Luc, Rozenberg, Philippe
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Plos One 2019
Subjects:
Online Access:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332
http://hdl.handle.net/20.500.12123/4928
https://doi.org/10.1371/journal.pone.0108332
_version_ 1855035408295919616
author Rossi, Jean Pierre
Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
author_browse Godefroid, Martin
Martinez Meier, Alejandro
Nardin, Maxime
Paques, Luc
Rossi, Jean Pierre
Rozenberg, Philippe
Ruiz Diaz, Manuela
Sergent, Anne Sophie
author_facet Rossi, Jean Pierre
Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
author_sort Rossi, Jean Pierre
collection INTA Digital
description Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
format info:ar-repo/semantics/artículo
id INTA4928
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Plos One
publisherStr Plos One
record_format dspace
spelling INTA49282019-04-17T12:48:02Z Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis Rossi, Jean Pierre Nardin, Maxime Godefroid, Martin Ruiz Diaz, Manuela Sergent, Anne Sophie Martinez Meier, Alejandro Paques, Luc Rozenberg, Philippe Arboles Forestales Anillo de Crecimiento Procesamiento de Datos Cambio Climático Análisis de Datos Forest Trees Growth Rings Data Processing Climate Change Data Analysis Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. EEA Bariloche Fil: Rossi, Jean Pierre. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia Fil: Nardin, Maxime. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia Fil: Godefroid, Martin. Institut National de la Recherche Agronomique. Centre de Biologie pour la Gestion des Populations; Francia Fil: Ruiz Diaz Britez, Manuela. Universidad Nacional de Misiones. Parque Tecnológico Misiones; Argentina. Fil: Sergent, Anne Sophie. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez Meier, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Paques, Luc. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia Fil: Rozenberg, Philippe. Institut National de la Recherche Agronomique. Amélioration Génétique et Physiologie Forestières; Francia 2019-04-17T12:46:08Z 2019-04-17T12:46:08Z 2014-09 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332 http://hdl.handle.net/20.500.12123/4928 1932-6203 https://doi.org/10.1371/journal.pone.0108332 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Plos One Plos One 9 (9) : e108332. (2014)
spellingShingle Arboles Forestales
Anillo de Crecimiento
Procesamiento de Datos
Cambio Climático
Análisis de Datos
Forest Trees
Growth Rings
Data Processing
Climate Change
Data Analysis
Rossi, Jean Pierre
Nardin, Maxime
Godefroid, Martin
Ruiz Diaz, Manuela
Sergent, Anne Sophie
Martinez Meier, Alejandro
Paques, Luc
Rozenberg, Philippe
Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_full Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_fullStr Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_full_unstemmed Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_short Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis
title_sort dissecting the space time structure of tree ring datasets using the partial triadic analysis
topic Arboles Forestales
Anillo de Crecimiento
Procesamiento de Datos
Cambio Climático
Análisis de Datos
Forest Trees
Growth Rings
Data Processing
Climate Change
Data Analysis
url https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108332
http://hdl.handle.net/20.500.12123/4928
https://doi.org/10.1371/journal.pone.0108332
work_keys_str_mv AT rossijeanpierre dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT nardinmaxime dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT godefroidmartin dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT ruizdiazmanuela dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT sergentannesophie dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT martinezmeieralejandro dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT paquesluc dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis
AT rozenbergphilippe dissectingthespacetimestructureoftreeringdatasetsusingthepartialtriadicanalysis