Quantitative genetics and genomics converge to accelerate forest tree breeding

Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and marke...

Full description

Bibliographic Details
Main Authors: Grattapaglia, Dario, Silva Junior, Orzenil B., Resende, Rafael T., Cappa, Eduardo Pablo, Müller, Bárbara S. F., Tan, Biyue, Isik, Fikret, Ratcliffe, Blaise, El-Kassaby, Yousry A.
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: 2019
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
http://hdl.handle.net/20.500.12123/4605
https://doi.org/10.3389/fpls.2018.01693
_version_ 1855035353264553984
author Grattapaglia, Dario
Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
author_browse Cappa, Eduardo Pablo
El-Kassaby, Yousry A.
Grattapaglia, Dario
Isik, Fikret
Müller, Bárbara S. F.
Ratcliffe, Blaise
Resende, Rafael T.
Silva Junior, Orzenil B.
Tan, Biyue
author_facet Grattapaglia, Dario
Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
author_sort Grattapaglia, Dario
collection INTA Digital
description Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
format info:ar-repo/semantics/artículo
id INTA4605
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
record_format dspace
spelling INTA46052019-03-14T13:13:06Z Quantitative genetics and genomics converge to accelerate forest tree breeding Grattapaglia, Dario Silva Junior, Orzenil B. Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El-Kassaby, Yousry A. Quantitative Genetics Quantitative Trait Loci Forest Trees Genética Cuantitativa Loci de Rasgos Cuantitativos Árboles Forestales Genomic Selection Tree Breeding Whole-genome Regression Single Nucleotide Polymorphisms Marker Assisted Selection Realized Genomic Relationship Selección Genómica Cría de Arboles Regresión de Todo el Genoma Polimorfismos de un Sólo Nucleótido Selección Asistida por Marcador Relación Genómica Realizada Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding. Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos Fil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil Fil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil Fil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Suecia Fil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá 2019-03-14T12:58:47Z 2019-03-14T12:58:47Z 2018-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full http://hdl.handle.net/20.500.12123/4605 https://doi.org/10.3389/fpls.2018.01693 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Frontiers in Plant Science 9 : 1693 (November 2018)
spellingShingle Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
Grattapaglia, Dario
Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
Quantitative genetics and genomics converge to accelerate forest tree breeding
title Quantitative genetics and genomics converge to accelerate forest tree breeding
title_full Quantitative genetics and genomics converge to accelerate forest tree breeding
title_fullStr Quantitative genetics and genomics converge to accelerate forest tree breeding
title_full_unstemmed Quantitative genetics and genomics converge to accelerate forest tree breeding
title_short Quantitative genetics and genomics converge to accelerate forest tree breeding
title_sort quantitative genetics and genomics converge to accelerate forest tree breeding
topic Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
url https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
http://hdl.handle.net/20.500.12123/4605
https://doi.org/10.3389/fpls.2018.01693
work_keys_str_mv AT grattapagliadario quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT silvajuniororzenilb quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT resenderafaelt quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT cappaeduardopablo quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT mullerbarbarasf quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT tanbiyue quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT isikfikret quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT ratcliffeblaise quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding
AT elkassabyyousrya quantitativegeneticsandgenomicsconvergetoaccelerateforesttreebreeding