Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores

Advances in genotyping technology, such as molecular markers, have noticeably improved our capacity to characterize genomes at multiple loci. Concomitantly, the methodological framework to analyze genetic data has expanded, and keeping abreast with the latest statistical developments to analyze mole...

Descripción completa

Detalles Bibliográficos
Autores principales: Teich, Ingrid, Verga, Anibal Ramón, Balzarini, Mónica Graciela
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Scientific Research Publishing 2019
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/4194
_version_ 1855035276938706944
author Teich, Ingrid
Verga, Anibal Ramón
Balzarini, Mónica Graciela
author_browse Balzarini, Mónica Graciela
Teich, Ingrid
Verga, Anibal Ramón
author_facet Teich, Ingrid
Verga, Anibal Ramón
Balzarini, Mónica Graciela
author_sort Teich, Ingrid
collection INTA Digital
description Advances in genotyping technology, such as molecular markers, have noticeably improved our capacity to characterize genomes at multiple loci. Concomitantly, the methodological framework to analyze genetic data has expanded, and keeping abreast with the latest statistical developments to analyze molecular marker data in the context of spatial genetics has become a difficult task. Most methods in spatial statistics are devoted to univariate data whereas the nature of molecular marker data is highly dimensional. Multivariate methods are aimed at finding proximities between entities characterized by multiple variables by summarizing information in few synthetic variables. In particular, Principal Component analysis (PCA) has been used to study genetic structure of geo-referenced allele frequency profiles, incorporating spatial information with a posteriori analysis. Conversely, the recently developed spatially restricted PCA (sPCA) explicitly includes spatial data in the optimization criterion. In this work, we compared the results of the application of PCA and sPCA in the study of the spatial genetic structure at fine scale of a Prosopis flexuosa and P. chilensis hybrid swarm. Data consisted in the genetic characterization of 87 trees sampled in Córdoba, Argentina and genotyped at six microsatellites, which yielded 72 alleles. As expected, principal components explained more variance than sPCA components, but were less spatially autocorrelated. The maps obtained by the interpolation of sPC1 values allowed a better visualization of a patchy spatial pattern of genetic variability than the PC1 synthetic map. We also proposed a PC-sPC scatter plot of allele loadings to better understand the allele contributions to spatial genetic variability.
format info:ar-repo/semantics/artículo
id INTA4194
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Scientific Research Publishing
publisherStr Scientific Research Publishing
record_format dspace
spelling INTA41942019-01-04T18:09:09Z Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores Teich, Ingrid Verga, Anibal Ramón Balzarini, Mónica Graciela Prosopis Marcadores Genéticos Análisis Multivariante Bosques Genetic Markers Multivariate Analysis Forests sPCA Advances in genotyping technology, such as molecular markers, have noticeably improved our capacity to characterize genomes at multiple loci. Concomitantly, the methodological framework to analyze genetic data has expanded, and keeping abreast with the latest statistical developments to analyze molecular marker data in the context of spatial genetics has become a difficult task. Most methods in spatial statistics are devoted to univariate data whereas the nature of molecular marker data is highly dimensional. Multivariate methods are aimed at finding proximities between entities characterized by multiple variables by summarizing information in few synthetic variables. In particular, Principal Component analysis (PCA) has been used to study genetic structure of geo-referenced allele frequency profiles, incorporating spatial information with a posteriori analysis. Conversely, the recently developed spatially restricted PCA (sPCA) explicitly includes spatial data in the optimization criterion. In this work, we compared the results of the application of PCA and sPCA in the study of the spatial genetic structure at fine scale of a Prosopis flexuosa and P. chilensis hybrid swarm. Data consisted in the genetic characterization of 87 trees sampled in Córdoba, Argentina and genotyped at six microsatellites, which yielded 72 alleles. As expected, principal components explained more variance than sPCA components, but were less spatially autocorrelated. The maps obtained by the interpolation of sPC1 values allowed a better visualization of a patchy spatial pattern of genetic variability than the PC1 synthetic map. We also proposed a PC-sPC scatter plot of allele loadings to better understand the allele contributions to spatial genetic variability. Instituto de Fitopatología Fil: Teich, Ingrid. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina Fil: Verga, Anibal Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fitopatología y Fisiología Vegetal; Argentina Fil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina 2019-01-02T19:05:39Z 2019-01-02T19:05:39Z 2014-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/4194 2156-8456 2156-8502 (Online) 10.4236/abb.2014.52013 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Scientific Research Publishing Advances in bioscience and biotechnology 5 (2) : 89-99. (January 2014)
spellingShingle Prosopis
Marcadores Genéticos
Análisis Multivariante
Bosques
Genetic Markers
Multivariate Analysis
Forests
sPCA
Teich, Ingrid
Verga, Anibal Ramón
Balzarini, Mónica Graciela
Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title_full Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title_fullStr Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title_full_unstemmed Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title_short Assessing spatial genetic structure from molecular marker data via principal component analyses: a case study in a Prosopis sp. fores
title_sort assessing spatial genetic structure from molecular marker data via principal component analyses a case study in a prosopis sp fores
topic Prosopis
Marcadores Genéticos
Análisis Multivariante
Bosques
Genetic Markers
Multivariate Analysis
Forests
sPCA
url http://hdl.handle.net/20.500.12123/4194
work_keys_str_mv AT teichingrid assessingspatialgeneticstructurefrommolecularmarkerdataviaprincipalcomponentanalysesacasestudyinaprosopisspfores
AT vergaanibalramon assessingspatialgeneticstructurefrommolecularmarkerdataviaprincipalcomponentanalysesacasestudyinaprosopisspfores
AT balzarinimonicagraciela assessingspatialgeneticstructurefrommolecularmarkerdataviaprincipalcomponentanalysesacasestudyinaprosopisspfores