Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)

Genus Helianthus comprises diploid and polyploid species. An autoallopolyploid origin has been proposed for hexaploid species but the genomic relationships remain unclear. Mitotic and meiotic studies in annual Helianthus annuus (2n = 2x = 34) and perennial Helianthus resinosus (2n = 6x = 102) as wel...

Descripción completa

Detalles Bibliográficos
Autores principales: Miranda Zanetti, Julieta, Greizerstein, Eduardo Jose, Camadro, Elsa Lucila, Poverene, María Mónica, Echeverria, Mercedes, Poggio, Lidia, Carrera, Alicia Delia
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Springer 2018
Materias:
Acceso en línea:https://link.springer.com/article/10.1007/s00606-013-0945-0
http://hdl.handle.net/20.500.12123/4156
https://doi.org/10.1007/s00606-013-0945-0
_version_ 1855035270883180544
author Miranda Zanetti, Julieta
Greizerstein, Eduardo Jose
Camadro, Elsa Lucila
Poverene, María Mónica
Echeverria, Mercedes
Poggio, Lidia
Carrera, Alicia Delia
author_browse Camadro, Elsa Lucila
Carrera, Alicia Delia
Echeverria, Mercedes
Greizerstein, Eduardo Jose
Miranda Zanetti, Julieta
Poggio, Lidia
Poverene, María Mónica
author_facet Miranda Zanetti, Julieta
Greizerstein, Eduardo Jose
Camadro, Elsa Lucila
Poverene, María Mónica
Echeverria, Mercedes
Poggio, Lidia
Carrera, Alicia Delia
author_sort Miranda Zanetti, Julieta
collection INTA Digital
description Genus Helianthus comprises diploid and polyploid species. An autoallopolyploid origin has been proposed for hexaploid species but the genomic relationships remain unclear. Mitotic and meiotic studies in annual Helianthus annuus (2n = 2x = 34) and perennial Helianthus resinosus (2n = 6x = 102) as well as the F1 hybrids between both species were carried out. Chromosome counting confirmed the hybrid origin of the latter plants and their tetraploid condition. Bivalents in hybrids ranged from 12 to 28 ( x¯ = 20.8). Univalents, trivalents and quadrivalents were also observed. Meiotic products comprised dyads, triads and normal tetrads and pollen grains were heterogeneous in size. These observations suggest the occurrence of 2n pollen in addition to the expected n. Genomic in situ hybridization (GISH) of total H. annuus DNA on H. resinosus chromosomes rendered weak but uniform signals; similar hybridization pattern was observed using three other annual species. Hybridization with H. annuus probe performed on root tip cells of F1 H. annuus × H. resinosus hybrids revealed 17 chromosomes with a strong hybridization signal. GISH in hybrid meiocytes distinguished chromosomes from parental species and revealed autosyndetic pairing of H. resinosus chromosomes, allosyndetic pairing in bivalents, trivalents and quadrivalents, and the presence of univalents derived from parents, H. annuus and H. resinosus. Results obtained from classical and molecular cytogenetics do not support H. annuus as a direct ancestor of H. resinosus. The occurrence of allosyndetic pairing and the relatively high fertility of the F1 hybrids point to the possibility that useful genes could be transferred from H. resinosus to cultivate sunflower, although the effective rate of recombination has not been evaluated. GISH method proved effective to recognize parental chromosomes in H. annuus × H. resinosus progeny.
format info:ar-repo/semantics/artículo
id INTA4156
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
publisher Springer
publisherStr Springer
record_format dspace
spelling INTA41562019-01-22T17:19:08Z Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae) Miranda Zanetti, Julieta Greizerstein, Eduardo Jose Camadro, Elsa Lucila Poverene, María Mónica Echeverria, Mercedes Poggio, Lidia Carrera, Alicia Delia Helianthus Helianthus Annuus Hexaploidia Diploidia Genómica Poliploidia Hibridación Interespecífica Hexaploidy Diploidy Genomics Polyploidy Interspecific Hybridization Helianthus resinosus Girasol Genus Helianthus comprises diploid and polyploid species. An autoallopolyploid origin has been proposed for hexaploid species but the genomic relationships remain unclear. Mitotic and meiotic studies in annual Helianthus annuus (2n = 2x = 34) and perennial Helianthus resinosus (2n = 6x = 102) as well as the F1 hybrids between both species were carried out. Chromosome counting confirmed the hybrid origin of the latter plants and their tetraploid condition. Bivalents in hybrids ranged from 12 to 28 ( x¯ = 20.8). Univalents, trivalents and quadrivalents were also observed. Meiotic products comprised dyads, triads and normal tetrads and pollen grains were heterogeneous in size. These observations suggest the occurrence of 2n pollen in addition to the expected n. Genomic in situ hybridization (GISH) of total H. annuus DNA on H. resinosus chromosomes rendered weak but uniform signals; similar hybridization pattern was observed using three other annual species. Hybridization with H. annuus probe performed on root tip cells of F1 H. annuus × H. resinosus hybrids revealed 17 chromosomes with a strong hybridization signal. GISH in hybrid meiocytes distinguished chromosomes from parental species and revealed autosyndetic pairing of H. resinosus chromosomes, allosyndetic pairing in bivalents, trivalents and quadrivalents, and the presence of univalents derived from parents, H. annuus and H. resinosus. Results obtained from classical and molecular cytogenetics do not support H. annuus as a direct ancestor of H. resinosus. The occurrence of allosyndetic pairing and the relatively high fertility of the F1 hybrids point to the possibility that useful genes could be transferred from H. resinosus to cultivate sunflower, although the effective rate of recombination has not been evaluated. GISH method proved effective to recognize parental chromosomes in H. annuus × H. resinosus progeny. EEA Balcarce Fil: Miranda Zanetti, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina Fil: Greizerstein, Eduardo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina Fil: Camadro, Elsa Lucila. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Poverene, María Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina Fil: Echeverria, Mercedes. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Poggio, Lidia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carrera, Alicia Delia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina 2018-12-27T12:45:28Z 2018-12-27T12:45:28Z 2014-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://link.springer.com/article/10.1007/s00606-013-0945-0 http://hdl.handle.net/20.500.12123/4156 0378-2697 1615-6110 https://doi.org/10.1007/s00606-013-0945-0 eng info:eu-repo/semantics/restrictedAccess application/pdf Springer Plant Systematics and Evolution 300 (5) : 1071–1078 (May 2014)
spellingShingle Helianthus
Helianthus Annuus
Hexaploidia
Diploidia
Genómica
Poliploidia
Hibridación Interespecífica
Hexaploidy
Diploidy
Genomics
Polyploidy
Interspecific Hybridization
Helianthus resinosus
Girasol
Miranda Zanetti, Julieta
Greizerstein, Eduardo Jose
Camadro, Elsa Lucila
Poverene, María Mónica
Echeverria, Mercedes
Poggio, Lidia
Carrera, Alicia Delia
Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title_full Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title_fullStr Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title_full_unstemmed Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title_short Genomic relationships between hexaploid Helianthus resinosus and diploid Helianthus annuus (Asteraceae)
title_sort genomic relationships between hexaploid helianthus resinosus and diploid helianthus annuus asteraceae
topic Helianthus
Helianthus Annuus
Hexaploidia
Diploidia
Genómica
Poliploidia
Hibridación Interespecífica
Hexaploidy
Diploidy
Genomics
Polyploidy
Interspecific Hybridization
Helianthus resinosus
Girasol
url https://link.springer.com/article/10.1007/s00606-013-0945-0
http://hdl.handle.net/20.500.12123/4156
https://doi.org/10.1007/s00606-013-0945-0
work_keys_str_mv AT mirandazanettijulieta genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT greizersteineduardojose genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT camadroelsalucila genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT poverenemariamonica genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT echeverriamercedes genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT poggiolidia genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae
AT carreraaliciadelia genomicrelationshipsbetweenhexaploidhelianthusresinosusanddiploidhelianthusannuusasteraceae