Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter

Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez Antivilo, Francisco Alberto, Paz, Rosalía Cristina, Echeverria, Mariela, Keller, Markus, Tognetti, Jorge, Borgo, Roberto, Roig Junent, Fidel Alejandro
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Elsevier 2018
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/3795
https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub
https://doi.org/10.1016/j.agrformet.2018.07.017
_version_ 1855035204552359936
author Gonzalez Antivilo, Francisco Alberto
Paz, Rosalía Cristina
Echeverria, Mariela
Keller, Markus
Tognetti, Jorge
Borgo, Roberto
Roig Junent, Fidel Alejandro
author_browse Borgo, Roberto
Echeverria, Mariela
Gonzalez Antivilo, Francisco Alberto
Keller, Markus
Paz, Rosalía Cristina
Roig Junent, Fidel Alejandro
Tognetti, Jorge
author_facet Gonzalez Antivilo, Francisco Alberto
Paz, Rosalía Cristina
Echeverria, Mariela
Keller, Markus
Tognetti, Jorge
Borgo, Roberto
Roig Junent, Fidel Alejandro
author_sort Gonzalez Antivilo, Francisco Alberto
collection INTA Digital
description Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season.
format info:ar-repo/semantics/artículo
id INTA3795
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA37952019-01-10T15:57:07Z Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter Gonzalez Antivilo, Francisco Alberto Paz, Rosalía Cristina Echeverria, Mariela Keller, Markus Tognetti, Jorge Borgo, Roberto Roig Junent, Fidel Alejandro Vitis Vinífera Vid Invierno Cambio Climático Temperatura Winter Climate Change Temperature Temperature Resistance Resistencia a la Temperatura Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season. EEA San Juan Fil: Gonzalez Antivilo, Francisco Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Paz, Rosalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Echeverria, Mariela. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Keller, Markus. Washington State University. Department of Horticulture. Irrigated Agriculture Research and Extension Center; Estados Unidos Fil: Tognetti, Jorge Alberto. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Laboratorio de Fisiología Vegetal; Argentina Fil: Borgo, Roberto. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal; Argentina Fil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina 2018-11-06T13:24:56Z 2018-11-06T13:24:56Z 2018-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/3795 https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub 0168-1923 https://doi.org/10.1016/j.agrformet.2018.07.017 eng info:eu-repo/semantics/restrictedAccess application/pdf Elsevier Agricultural and forest meteorology 262 : 227-236. (15 November 2018)
spellingShingle Vitis Vinífera
Vid
Invierno
Cambio Climático
Temperatura
Winter
Climate Change
Temperature
Temperature Resistance
Resistencia a la Temperatura
Gonzalez Antivilo, Francisco Alberto
Paz, Rosalía Cristina
Echeverria, Mariela
Keller, Markus
Tognetti, Jorge
Borgo, Roberto
Roig Junent, Fidel Alejandro
Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title_full Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title_fullStr Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title_full_unstemmed Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title_short Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
title_sort thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter
topic Vitis Vinífera
Vid
Invierno
Cambio Climático
Temperatura
Winter
Climate Change
Temperature
Temperature Resistance
Resistencia a la Temperatura
url http://hdl.handle.net/20.500.12123/3795
https://www.sciencedirect.com/science/article/pii/S0168192318302399?via%3Dihub
https://doi.org/10.1016/j.agrformet.2018.07.017
work_keys_str_mv AT gonzalezantivilofranciscoalberto thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT pazrosaliacristina thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT echeverriamariela thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT kellermarkus thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT tognettijorge thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT borgoroberto thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter
AT roigjunentfidelalejandro thermalhistoryparametersdrivechangesinphysiologyandcoldhardinessofyounggrapevineplantsduringwinter