MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes

Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome e...

Full description

Bibliographic Details
Main Authors: Crescente, Juan Manuel, Zavallo, Diego, Helguera, Marcelo, Vanzetti, Leonardo Sebastian
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: BioMed Central 2018
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/3607
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y
https://doi.org/10.1186/s12859-018-2376-y
_version_ 1855035171812671488
author Crescente, Juan Manuel
Zavallo, Diego
Helguera, Marcelo
Vanzetti, Leonardo Sebastian
author_browse Crescente, Juan Manuel
Helguera, Marcelo
Vanzetti, Leonardo Sebastian
Zavallo, Diego
author_facet Crescente, Juan Manuel
Zavallo, Diego
Helguera, Marcelo
Vanzetti, Leonardo Sebastian
author_sort Crescente, Juan Manuel
collection INTA Digital
description Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome.
format info:ar-repo/semantics/artículo
id INTA3607
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
publisher BioMed Central
publisherStr BioMed Central
record_format dspace
spelling INTA36072018-10-17T13:00:37Z MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes Crescente, Juan Manuel Zavallo, Diego Helguera, Marcelo Vanzetti, Leonardo Sebastian Arroz Trigo Triticum Aestivum Oryza Sativa Genomas Transposones Rice Wheat Genomes Transposons Transposable Element MITE Miniature Inverted-repeat Transposable Elements Background: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences. Results: Here we describe MITE Tracker, a novel, open source software program that finds and classifies MITEs using an efficient alignment strategy to retrieve nearby inverted-repeat sequences from large genomes. This program groups them into high sequence homology families using a fast clustering algorithm and finally filters only those elements that were likely transposed from different genomic locations because of their low scoring flanking sequence alignment. Conclusions: Many programs have been proposed to find MITEs hidden in genomes. However, none of them are able to process large-scale genomes such as that of bread wheat. Furthermore, in many cases the existing methods perform high false-positive rates (or miss rates). The rice genome was used as reference to compare MITE Tracker against known tools. Our method turned out to be the most reliable in our tests. Indeed, it revealed more known elements, presented the lowest false-positive number and was the only program able to run with the bread wheat genome as input. In wheat, MITE Tracker discovered 6013 MITE families and allowed the first structural exploration of MITEs in the complete bread wheat genome. EEA Marcos Juárez Fil: Crescente, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zavallo, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina Fil: Helguera, Marcelo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina Fil: Vanzetti, Leonardo Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Grupo Biotecnología y Recursos Genéticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2018-10-17T12:33:16Z 2018-10-17T12:33:16Z 2018 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/3607 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y 1471-2105 https://doi.org/10.1186/s12859-018-2376-y eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf BioMed Central BMC bioinformatics 19 : 348. (2018)
spellingShingle Arroz
Trigo
Triticum Aestivum
Oryza Sativa
Genomas
Transposones
Rice
Wheat
Genomes
Transposons
Transposable Element
MITE
Miniature Inverted-repeat Transposable Elements
Crescente, Juan Manuel
Zavallo, Diego
Helguera, Marcelo
Vanzetti, Leonardo Sebastian
MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title_full MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title_fullStr MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title_full_unstemmed MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title_short MITE Tracker : an accurate approach to identify miniature inverted-repeat transposable elements in large genomes
title_sort mite tracker an accurate approach to identify miniature inverted repeat transposable elements in large genomes
topic Arroz
Trigo
Triticum Aestivum
Oryza Sativa
Genomas
Transposones
Rice
Wheat
Genomes
Transposons
Transposable Element
MITE
Miniature Inverted-repeat Transposable Elements
url http://hdl.handle.net/20.500.12123/3607
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y
https://doi.org/10.1186/s12859-018-2376-y
work_keys_str_mv AT crescentejuanmanuel mitetrackeranaccurateapproachtoidentifyminiatureinvertedrepeattransposableelementsinlargegenomes
AT zavallodiego mitetrackeranaccurateapproachtoidentifyminiatureinvertedrepeattransposableelementsinlargegenomes
AT helgueramarcelo mitetrackeranaccurateapproachtoidentifyminiatureinvertedrepeattransposableelementsinlargegenomes
AT vanzettileonardosebastian mitetrackeranaccurateapproachtoidentifyminiatureinvertedrepeattransposableelementsinlargegenomes