Better estimates of soil carbon from geographical data: a revised global approach
Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a gl...
| Autores principales: | , , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | https://link.springer.com/article/10.1007/s11027-018-9815-y http://hdl.handle.net/20.500.12123/2925 https://doi.org/10.1007/s11027-018-9815-y |
| _version_ | 1855035051803148288 |
|---|---|
| author | Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton |
| author_browse | Amelung, Wulf Berhongaray, Gonzalo Bird, Michael I. Bonser, Stephen P. Borchard, Nils Cowie, Annette L. Dieleman, Wouter Duarte Guardia, Sandra Jobbagy Gampel, Esteban Gabriel Ladd, Brenton Laffan, Shawn W. Martinez, Maria Jose Pepper, David A. Peri, Pablo Luis Piñeiro, Gervasio Sheil, Douglas Silva, Lucas C. R. Zutta, Brian |
| author_facet | Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton |
| author_sort | Duarte Guardia, Sandra |
| collection | INTA Digital |
| description | Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes. |
| format | info:ar-repo/semantics/artículo |
| id | INTA2925 |
| institution | Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina) |
| language | Inglés |
| publishDate | 2018 |
| publishDateRange | 2018 |
| publishDateSort | 2018 |
| record_format | dspace |
| spelling | INTA29252018-11-20T13:13:21Z Better estimates of soil carbon from geographical data: a revised global approach Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes. EEA Santa Cruz Fil: Duarte Guardia, Sandra. Universidad Nacional de la Patagonia Austral; Argentina Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amelung, Wulf. University of Bonn. Soil Science and Soil Ecology. Institute of Crop Science and Resource Conservation (INRES); Alemania Fil: Sheil, Douglas. Norwegian University of Life Sciences. Faculty of Environmental Sciences and Natural Resource Management; Noruega. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia Fil: Borchard, Nils. Forschungszentrum Jülich GmbH. Agrosphere Institute (IBG-3); Alemania. Jalan Cifor Rawajaha. Center for International Forestry Research (CIFOR); Indonesia. Ruhr-University Bochum, Institute of Geography, Soil Science/Soil Ecology; Alemania. Plant Production Natural Resources Institute Finland (Luke); Finlandia Fil: Laffan, Shawn W. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia Fil: Bird, Michael I. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia Fil: Dieleman, Wouter. James Cook University. College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science; Australia Fil: Pepper, David A. University of New South Wales. School of Biological, Earth and Environmental Sciences; Australia. University of Canberra. Institute for Applied Ecology; Australia Fil: Zutta, Brian. Perú. Ministerio del Ambiente. Programa Nacional de Conservación de Bosques; Perú Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis; Argentina Fil: Silva, Lucas C. R. University of Oregon. Institute of Ecology & Evolution. Department of Geography. Environmental Studies Program; Estados Unidos Fil: Bonser, Stephen P. University of New South Wales. School of Biological, Earth and Environmental Sciences. Evolution and Ecology Research Centre; Australia Fil: Berhongaray, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral.Facultad de Ciencias Agrarias; Argentina Fil: Piñeiro, Gervasio. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Ecología. Laboratorio de Análisis Regional y Teledetección; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de la República. Facultad de Agronomia; Uruguay Fil: Martinez, Maria Jose. Universidad Científica del Sur. Escuela de Agroforestería; Perú Fil: Cowie, Annette L. NSW Department of Primary Industries; Australia. University of New England. School of Environmental and Rural Science; Australia Fil: Ladd, Brenton. Universidad Científica del Sur. Escuela de Agroforestería; Peru. UNSW Australia. School of Biological. Earth and Environmental Sciences, Evolution and Ecology Research Centre; Australia 2018-07-31T12:18:13Z 2018-07-31T12:18:13Z 2018-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://link.springer.com/article/10.1007/s11027-018-9815-y http://hdl.handle.net/20.500.12123/2925 1381-2386 1573-1596 https://doi.org/10.1007/s11027-018-9815-y eng info:eu-repo/semantics/restrictedAccess application/pdf Mitigation and Adaptation Strategies for Global Change : 1–18 (May 2018) |
| spellingShingle | Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems Duarte Guardia, Sandra Peri, Pablo Luis Amelung, Wulf Sheil, Douglas Laffan, Shawn W. Borchard, Nils Bird, Michael I. Dieleman, Wouter Pepper, David A. Zutta, Brian Jobbagy Gampel, Esteban Gabriel Silva, Lucas C. R. Bonser, Stephen P. Berhongaray, Gonzalo Piñeiro, Gervasio Martinez, Maria Jose Cowie, Annette L. Ladd, Brenton Better estimates of soil carbon from geographical data: a revised global approach |
| title | Better estimates of soil carbon from geographical data: a revised global approach |
| title_full | Better estimates of soil carbon from geographical data: a revised global approach |
| title_fullStr | Better estimates of soil carbon from geographical data: a revised global approach |
| title_full_unstemmed | Better estimates of soil carbon from geographical data: a revised global approach |
| title_short | Better estimates of soil carbon from geographical data: a revised global approach |
| title_sort | better estimates of soil carbon from geographical data a revised global approach |
| topic | Clima Cambio Climático Suelo Carbono Sistemas de Información Geográfica Climate Climate Change Soil Carbon Geographical Information Systems |
| url | https://link.springer.com/article/10.1007/s11027-018-9815-y http://hdl.handle.net/20.500.12123/2925 https://doi.org/10.1007/s11027-018-9815-y |
| work_keys_str_mv | AT duarteguardiasandra betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT peripabloluis betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT amelungwulf betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT sheildouglas betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT laffanshawnw betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT borchardnils betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT birdmichaeli betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT dielemanwouter betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT pepperdavida betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT zuttabrian betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT jobbagygampelestebangabriel betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT silvalucascr betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT bonserstephenp betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT berhongaraygonzalo betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT pineirogervasio betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT martinezmariajose betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT cowieannettel betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach AT laddbrenton betterestimatesofsoilcarbonfromgeographicaldataarevisedglobalapproach |