Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant

Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Cáceres, Pablo D., Manacorda, Carlos Augusto, Sutka, Moira, Asurmendi, Sebastian, Amodeo, Gabriela, Baroli, Irene
Formato: Artículo
Lenguaje:Inglés
Publicado: BioRxiv 2026
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/25035
https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1
https://doi.org/10.64898/2025.12.17.694893
_version_ 1855425456540483584
author Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
author_browse Amodeo, Gabriela
Asurmendi, Sebastian
Baroli, Irene
Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
author_facet Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
author_sort Cáceres, Pablo D.
collection INTA Digital
description Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux.
format Artículo
id INTA25035
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2026
publishDateRange 2026
publishDateSort 2026
publisher BioRxiv
publisherStr BioRxiv
record_format dspace
spelling INTA250352026-01-23T13:24:43Z Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant Cáceres, Pablo D. Manacorda, Carlos Augusto Sutka, Moira Asurmendi, Sebastian Amodeo, Gabriela Baroli, Irene Root Hydraulic Conductivity Transpiration Stomata Osmotic Stress Cell Communication Moisture Content Conductancia Hidráulica de Raíces Transpiración Estoma Estrés osmótico Comunicación Celular Contenido de Humedad Arabidopsis Aquaporin Acuaporina Abstract Background and aims: Understanding the coordination between root and shoot hydraulics is fundamental for improving plant performance under water stress. In this study, we investigated how shoot traits that enhance transpiration influence root hydraulic properties, using the Arabidopsis thaliana double mutant epf1 epf2, characterized by high stomatal density and increased transpiration. Methods: Plant lines epf1 epf2 and Col-0 (wild type) were grown hydroponically and compared for stomatal traits, rate of water loss, leaf and root water relations, aquaporin expression, and root hydraulic conductivity (Lpr). Then, to assess responses to water deficit, osmotic stress was induced by adding 2% polyethylene glycol (PEG) to the nutrient solution seven days before measurements. Key results: The epf1 epf2 double mutant exhibited ∼150% higher stomatal density, yet stomatal conductance and short-term rosette water loss increased by only ∼30% relative to wild type. Despite higher water loss, the mutant maintained its leaf relative water content, concomitant with a more negative leaf osmotic potential; root osmotic potential was similar between genotypes. epf1 epf2 showed lower Lpr than Col-0. Aquaporin transcript levels and the relative aquaporin contribution to root water transport did not differ between genotypes. Under osmotic stress, Col-0 instead showed lower Lpr than epf1 epf2, again without changes in aquaporin expression or relative contribution. Conclusions: Our results highlight an active contribution of the root as a modulator of the whole-plant hydraulic balance. Across scenarios where xylem tension was expected to increase, stomatal aperture and Lpr decreased. We suggest that enhanced transpiration elevates xylem tension, which acts as a long-distance cue, eliciting coordinated reductions in stomatal aperture and Lpr, thereby constraining water flux. Instituto de Biotecnología Fil: Cáceres, Pablo D. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Cáceres, Pablo D. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina Fil: Manacorda, Carlos Augusto. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Manacorda, Carlos Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina Fil: Sutka, Moira. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Sutka, Moira. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina Fil: Asurmendi, Sebastian. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; Argentina Fil: Asurmendi, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina Fil: Amodeo, Gabriela. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina Fil: Baroli, Irene. Universidad de Buenos Aires (UBA). Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad, Biología Experimental y Aplicada. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Baroli, Irene. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina 2026-01-23T13:12:15Z 2026-01-23T13:12:15Z 2025-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://hdl.handle.net/20.500.12123/25035 https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1 https://doi.org/10.64898/2025.12.17.694893 eng info:eu-repograntAgreement/INTA/2023-PD-L03-I084, Estreses bióticos y abióticos en plantas. Estudios fisiológicos y patológicos para el diseño de estrategias de mejoramiento y manejo info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf BioRxiv BioRxiv : the preprint server for biology (December 17, 2025)
spellingShingle Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
Cáceres, Pablo D.
Manacorda, Carlos Augusto
Sutka, Moira
Asurmendi, Sebastian
Amodeo, Gabriela
Baroli, Irene
Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_full Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_fullStr Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_full_unstemmed Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_short Root hydraulic conductivity and transpiration in Arabidopsis : coordination revealed by a high-stomatal-density mutant
title_sort root hydraulic conductivity and transpiration in arabidopsis coordination revealed by a high stomatal density mutant
topic Root Hydraulic Conductivity
Transpiration
Stomata
Osmotic Stress
Cell Communication
Moisture Content
Conductancia Hidráulica de Raíces
Transpiración
Estoma
Estrés osmótico
Comunicación Celular
Contenido de Humedad
Arabidopsis
Aquaporin
Acuaporina
url http://hdl.handle.net/20.500.12123/25035
https://www.biorxiv.org/content/10.64898/2025.12.17.694893v1
https://doi.org/10.64898/2025.12.17.694893
work_keys_str_mv AT cacerespablod roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant
AT manacordacarlosaugusto roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant
AT sutkamoira roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant
AT asurmendisebastian roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant
AT amodeogabriela roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant
AT baroliirene roothydraulicconductivityandtranspirationinarabidopsiscoordinationrevealedbyahighstomataldensitymutant