Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review

The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation...

Full description

Bibliographic Details
Main Authors: Martinez, Emilce Soledad, Tejada-Gutiérrez, Eva, Sorribas, Albert, Mateo-Fornes, Jordi, Solsona, Francesc, Defacio, Raquel Alicia, Alves, Rui
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/24480
https://www.sciencedirect.com/science/article/pii/S1574954125004947
https://doi.org/10.1016/j.ecoinf.2025.103485
_version_ 1855038949396840448
author Martinez, Emilce Soledad
Tejada-Gutiérrez, Eva
Sorribas, Albert
Mateo-Fornes, Jordi
Solsona, Francesc
Defacio, Raquel Alicia
Alves, Rui
author_browse Alves, Rui
Defacio, Raquel Alicia
Martinez, Emilce Soledad
Mateo-Fornes, Jordi
Solsona, Francesc
Sorribas, Albert
Tejada-Gutiérrez, Eva
author_facet Martinez, Emilce Soledad
Tejada-Gutiérrez, Eva
Sorribas, Albert
Mateo-Fornes, Jordi
Solsona, Francesc
Defacio, Raquel Alicia
Alves, Rui
author_sort Martinez, Emilce Soledad
collection INTA Digital
description The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies.
format info:ar-repo/semantics/artículo
id INTA24480
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA244802025-11-06T10:41:30Z Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review Martinez, Emilce Soledad Tejada-Gutiérrez, Eva Sorribas, Albert Mateo-Fornes, Jordi Solsona, Francesc Defacio, Raquel Alicia Alves, Rui Biodiversidad Base de Datos Integración Ecología Biodiversity Databases Integration Ecology Multimodal Data Data Integration Big Data Smart Data Mathematical Ecology The integration of multimodal data to analyze, model, and predict changes in plant biodiversity is critical for addressing global conservation challenges. This systematic review examines the current landscape of plant biodiversity data, focusing on the identification, classification, and evaluation of key open-access data sources and integration methodologies. We highlight the strengths and limitations of major biodiversity platforms, emphasizing their contributions to species occurrence, trait data, taxonomic checklists, and environmental variables. The review also explores computational tools for data integration. We describe and analyze the role of Darwin Core standards in data standardization, harmonization, and interoperability, highlighting the importance of tools such as Species Distribution Models and machine learning. Additionally, we assess the tools available for multimodal data integration and analysis of the effects of environmental drivers (e.g., temperature, precipitation, topography) on biodiversity. We find significant advancements in biodiversity informatics over the last decades. Still, challenges persist in achieving interoperability across datasets, in addressing spatial and temporal biases, and in integrating remote sensing with in situ observations. By identifying both the challenges and emerging solutions, this review contributes to advancing biodiversity monitoring strategies, aligning with global conservation goals outlined by the Convention on Biological Diversity and the United Nations Sustainable Development Goal 15. Ultimately, the findings underscore the importance of harmonized data integration frameworks to enhance predictive modeling capabilities and inform effective conservation policies. EEA Pergamino Fil: Martinez, Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Semillas. Banco Activo de Germoplasma; Argentina Fil: Martinez, Emilce. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Tejada-Gutiérrez, Eva. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Sorribas, Albert. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Mateo-Fornes, Jordi. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España Fil: Solsona, Francesc. Universidad de Lleida. Departamento de Ingeniería Informática y Diseño Digital; España Fil: Defacio, Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Recursos Genéticos; Argentina Fil: Alves, Rui. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España 2025-11-06T10:37:29Z 2025-11-06T10:37:29Z 2025-12 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/24480 https://www.sciencedirect.com/science/article/pii/S1574954125004947 1574-9541 https://doi.org/10.1016/j.ecoinf.2025.103485 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Ecological Informatics 92 : 103485. (December 2025)
spellingShingle Biodiversidad
Base de Datos
Integración
Ecología
Biodiversity
Databases
Integration
Ecology
Multimodal Data
Data Integration
Big Data
Smart Data
Mathematical Ecology
Martinez, Emilce Soledad
Tejada-Gutiérrez, Eva
Sorribas, Albert
Mateo-Fornes, Jordi
Solsona, Francesc
Defacio, Raquel Alicia
Alves, Rui
Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title_full Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title_fullStr Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title_full_unstemmed Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title_short Multimodal data integration to model, predict, and understand changes in plant biodiversity : a systematic review
title_sort multimodal data integration to model predict and understand changes in plant biodiversity a systematic review
topic Biodiversidad
Base de Datos
Integración
Ecología
Biodiversity
Databases
Integration
Ecology
Multimodal Data
Data Integration
Big Data
Smart Data
Mathematical Ecology
url http://hdl.handle.net/20.500.12123/24480
https://www.sciencedirect.com/science/article/pii/S1574954125004947
https://doi.org/10.1016/j.ecoinf.2025.103485
work_keys_str_mv AT martinezemilcesoledad multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT tejadagutierrezeva multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT sorribasalbert multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT mateofornesjordi multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT solsonafrancesc multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT defacioraquelalicia multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview
AT alvesrui multimodaldataintegrationtomodelpredictandunderstandchangesinplantbiodiversityasystematicreview