High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia

Soil organic carbon (SOC) is critical for sustaining agricultural productivity, enhancing resilience to climate change, and supporting ecosystem functions, particularly in fragile regions facing increasing aridity like Patagonia. Knowledge of SOC is often represented by decades old, coarse-scale map...

Full description

Bibliographic Details
Main Authors: Trinco, Fabio Daniel, Zeraatpisheh, Mojtaba, Turner, Hannah C., El Mujtar, Veronica Andrea, Tittonell, Pablo Adrian, Galford, Gillian L.
Format: info:ar-repo/semantics/artículo
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/23466
https://www.sciencedirect.com/science/article/pii/S0341816225006551
https://doi.org/10.1016/j.catena.2025.109353
_version_ 1855038760828272640
author Trinco, Fabio Daniel
Zeraatpisheh, Mojtaba
Turner, Hannah C.
El Mujtar, Veronica Andrea
Tittonell, Pablo Adrian
Galford, Gillian L.
author_browse El Mujtar, Veronica Andrea
Galford, Gillian L.
Tittonell, Pablo Adrian
Trinco, Fabio Daniel
Turner, Hannah C.
Zeraatpisheh, Mojtaba
author_facet Trinco, Fabio Daniel
Zeraatpisheh, Mojtaba
Turner, Hannah C.
El Mujtar, Veronica Andrea
Tittonell, Pablo Adrian
Galford, Gillian L.
author_sort Trinco, Fabio Daniel
collection INTA Digital
description Soil organic carbon (SOC) is critical for sustaining agricultural productivity, enhancing resilience to climate change, and supporting ecosystem functions, particularly in fragile regions facing increasing aridity like Patagonia. Knowledge of SOC is often represented by decades old, coarse-scale maps or sparse data, limiting its utility for land managers and policymakers. This study leverages a novel SOC database (1,724 samples) integrated with remote sensing and spatial variables in a machine learning model to produce high-resolution (30 m) SOC data that captures decision-relevant scales of variability across diverse land covers and uses. Results revealed that Random Forest modelling performed best in the NW Patagonian mountainous region. Feature selection procedures identified soil depth, spectral indices, and climatic factors such as evapotranspiration and aridity as important co-variates. We found significant heterogeneity in SOC distribution, ranging from the greatest SOC concentration in Nothofagus pumilio forests (132.4 ± 19.2 t ha−1 at 0–30 cm depth), to the lowest in the grasslands of the Monte ecoregion (27.6 ± 8.0 t ha−1). Due to landmass size, the grasslands of the Steppe ecoregion have the most carbon (276.5 million tons), followed by Nothofagus pumilio forests (103.7 million tons). These SOC (t ha−1) estimates agree with other studies, showing little difference for forests (10 %) and grasslands (14 %). The resulting maps of this study provide a critical baseline for evaluating SOC distribution, informing land management strategies, and guiding future climate resilience efforts in Patagonia and other similarly vulnerable regions across the globe.
format info:ar-repo/semantics/artículo
id INTA23466
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA234662025-08-19T11:31:20Z High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia Trinco, Fabio Daniel Zeraatpisheh, Mojtaba Turner, Hannah C. El Mujtar, Veronica Andrea Tittonell, Pablo Adrian Galford, Gillian L. Carbono Orgánico del Suelo Medio Ambiente Cobertura de Suelos Paisaje Sistemas de Información Geográfica Soil Organic Carbon Environment Land Cover Landscape Geographical Information Systems SIG Región Patagónica GIS Soil organic carbon (SOC) is critical for sustaining agricultural productivity, enhancing resilience to climate change, and supporting ecosystem functions, particularly in fragile regions facing increasing aridity like Patagonia. Knowledge of SOC is often represented by decades old, coarse-scale maps or sparse data, limiting its utility for land managers and policymakers. This study leverages a novel SOC database (1,724 samples) integrated with remote sensing and spatial variables in a machine learning model to produce high-resolution (30 m) SOC data that captures decision-relevant scales of variability across diverse land covers and uses. Results revealed that Random Forest modelling performed best in the NW Patagonian mountainous region. Feature selection procedures identified soil depth, spectral indices, and climatic factors such as evapotranspiration and aridity as important co-variates. We found significant heterogeneity in SOC distribution, ranging from the greatest SOC concentration in Nothofagus pumilio forests (132.4 ± 19.2 t ha−1 at 0–30 cm depth), to the lowest in the grasslands of the Monte ecoregion (27.6 ± 8.0 t ha−1). Due to landmass size, the grasslands of the Steppe ecoregion have the most carbon (276.5 million tons), followed by Nothofagus pumilio forests (103.7 million tons). These SOC (t ha−1) estimates agree with other studies, showing little difference for forests (10 %) and grasslands (14 %). The resulting maps of this study provide a critical baseline for evaluating SOC distribution, informing land management strategies, and guiding future climate resilience efforts in Patagonia and other similarly vulnerable regions across the globe. EEA Bariloche Fil: Trinco, Fabio Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentina Fil: Trinco, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Zeraatpisheh, Mojtaba. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidos Fil: Turner, Hannah C. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidos Fil: El Mujtar, Veronica Andrea. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentina Fil: El Mujtar, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Tittonell, Pablo Adrian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias de Bariloche; Argentina Fil: Tittonell, Pablo Adrian. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina Fil: Tittonell, Pablo Adrian. Groningen University. Groningen Institute of Evolutionary Life Sciences; Países Bajos Fil: Tittonell, Pablo Adrian. Universite de Montpellier. Centre de cooperation Internationale en Recherche Agronomique pour le Developpement. Agroecologie et Intensification Durable; Francia. Fil: Galford, Gillian L. University of Vermont. Gund Institute for Environment and Rubenstein School of Environment and Natural Resources; Estados Unidos 2025-08-19T11:27:44Z 2025-08-19T11:27:44Z 2025-11 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/23466 https://www.sciencedirect.com/science/article/pii/S0341816225006551 0341-8162 1872-6887 https://doi.org/10.1016/j.catena.2025.109353 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier CATENA 259 : 109353. (November 2025)
spellingShingle Carbono Orgánico del Suelo
Medio Ambiente
Cobertura de Suelos
Paisaje
Sistemas de Información Geográfica
Soil Organic Carbon
Environment
Land Cover
Landscape
Geographical Information Systems
SIG
Región Patagónica
GIS
Trinco, Fabio Daniel
Zeraatpisheh, Mojtaba
Turner, Hannah C.
El Mujtar, Veronica Andrea
Tittonell, Pablo Adrian
Galford, Gillian L.
High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title_full High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title_fullStr High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title_full_unstemmed High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title_short High-resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in Patagonia
title_sort high resolution soil organic carbon mapping for enhancing predictive accuracy of environmental drivers in heterogeneous and mountainous landscapes in patagonia
topic Carbono Orgánico del Suelo
Medio Ambiente
Cobertura de Suelos
Paisaje
Sistemas de Información Geográfica
Soil Organic Carbon
Environment
Land Cover
Landscape
Geographical Information Systems
SIG
Región Patagónica
GIS
url http://hdl.handle.net/20.500.12123/23466
https://www.sciencedirect.com/science/article/pii/S0341816225006551
https://doi.org/10.1016/j.catena.2025.109353
work_keys_str_mv AT trincofabiodaniel highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia
AT zeraatpishehmojtaba highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia
AT turnerhannahc highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia
AT elmujtarveronicaandrea highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia
AT tittonellpabloadrian highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia
AT galfordgillianl highresolutionsoilorganiccarbonmappingforenhancingpredictiveaccuracyofenvironmentaldriversinheterogeneousandmountainouslandscapesinpatagonia