Editorial : Current status of honey bee genetic and breeding programs : progress and perspectives
Honey bees (Apis mellifera L.) contribute to food production and sustain biodiversity in managed and natural ecosystems through the pollination of a variety of plant species, which helps maintain a dynamic equilibrium among animals and plants. Additionally, honey bees have been bred by humans becaus...
| Autores principales: | , , , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | Inglés |
| Publicado: |
Frontiers Media
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/22831 https://www.frontiersin.org/journals/insect-science/articles/10.3389/finsc.2024.1365665/full https://doi.org/10.3389/finsc.2024.1365665 |
| Sumario: | Honey bees (Apis mellifera L.) contribute to food production and sustain biodiversity in managed and natural ecosystems through the pollination of a variety of plant species, which helps maintain a dynamic equilibrium among animals and plants. Additionally, honey bees have been bred by humans because of the value of their products. Populations of these insects face numerous challenges that affect their fitness and survival as the intensification of agriculture, climate change, and some diseases and parasites, including the mite Varroa destructor. The economic value of honey bees has attracted scientific and technical interest and their unusual genetic and behavioral attributes have increased the interest of geneticists and breeders. Nowadays, advances in molecular characterization of honey bee traits have greatly expanded our knowledge of this species and bring a unique opportunity for updating the criteria of selection and preservation of honey bee genetic resources. Resistance has been one of the main selection criteria applied worldwide, and gentleness had special attention in the Americas where Africanized honey bee (AHB) populations are present. Characterization of genetic materials is a key point in selection programs and new tools have been developed for this purpose in recent years.
This Research Topic includes 6 published articles that focused on the genetic characterization, identification, and breeding of honey bee populations, as well as on tools, traits, and genetic markers, for the selection of Varroa resistence and defensive behavior of honey bees. Litvinoff et al., applied a morphometric approach and haplotype analyses on drones and workers in an area of natural hybridization in Argentina, sampling bees not only from colonies but also from Drone Congregation Areas (DCA) to monitor hybridization between AHB and European honey bees (EHB). |
|---|