Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation

Most crop yield forecast models operate at coarse scales (e.g., county or region) or need extensive input data for finer resolutions. Here, we present maize (Zea mays L.) yield forecast models that require minimal user data and operate at field and regional scales throughout the growing season. Usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Menendez-Coccoz, Martin, Rotili, Diego Hernán, Otegui, María Elena, Martini, Gustavo, Paolini, María, Di Bella, Carlos, Piñeiro, Gervasio, Oesterheld, Martín
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: Wiley 2025
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/22797
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.70089
https://doi.org/10.1002/agj2.70089
_version_ 1855038640839720960
author Menendez-Coccoz, Martin
Rotili, Diego Hernán
Otegui, María Elena
Martini, Gustavo
Paolini, María
Di Bella, Carlos
Piñeiro, Gervasio
Oesterheld, Martín
author_browse Di Bella, Carlos
Martini, Gustavo
Menendez-Coccoz, Martin
Oesterheld, Martín
Otegui, María Elena
Paolini, María
Piñeiro, Gervasio
Rotili, Diego Hernán
author_facet Menendez-Coccoz, Martin
Rotili, Diego Hernán
Otegui, María Elena
Martini, Gustavo
Paolini, María
Di Bella, Carlos
Piñeiro, Gervasio
Oesterheld, Martín
author_sort Menendez-Coccoz, Martin
collection INTA Digital
description Most crop yield forecast models operate at coarse scales (e.g., county or region) or need extensive input data for finer resolutions. Here, we present maize (Zea mays L.) yield forecast models that require minimal user data and operate at field and regional scales throughout the growing season. Using 1853 maize field-years in Argentina, with known location, sowing date, and yield, our models leveraged absorbed radiation (from satellite imagery), temperature-based phenology, regional site-year properties, El Niño-Southern Oscillation (ENSO) phase predictions, and sowing period. At the field scale, our models achieved high accuracy at physiological maturity, with a mean error of 1 t ha−1 (16%). Yield forecasts were mainly driven by absorbed radiation during the reproductive phase and a regional factor. Early-season forecasts incorporated ENSO and sowing period, but with reduced accuracy. When scaled to regional forecasts, the models performed even better, with a mean error of 0.3 t ha−1 (4%). These results combine a novel case of yield forecast because of the low data requirements from users, high anticipation (30–90 days before harvest), and good levels of accuracy at both field and regional scales. Additionally, the models’ interpretability makes them valuable diagnostic tools for post-season analysis.
format info:ar-repo/semantics/artículo
id INTA22797
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Wiley
publisherStr Wiley
record_format dspace
spelling INTA227972025-06-26T11:47:01Z Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation Menendez-Coccoz, Martin Rotili, Diego Hernán Otegui, María Elena Martini, Gustavo Paolini, María Di Bella, Carlos Piñeiro, Gervasio Oesterheld, Martín Maíz Maize Rendimiento de cultivos Crop yield Manejo del cultivo Crop management Radiación fotosintéticamente activa Photosynthetically active radiation El Niño Índice de cosecha Harvest index Most crop yield forecast models operate at coarse scales (e.g., county or region) or need extensive input data for finer resolutions. Here, we present maize (Zea mays L.) yield forecast models that require minimal user data and operate at field and regional scales throughout the growing season. Using 1853 maize field-years in Argentina, with known location, sowing date, and yield, our models leveraged absorbed radiation (from satellite imagery), temperature-based phenology, regional site-year properties, El Niño-Southern Oscillation (ENSO) phase predictions, and sowing period. At the field scale, our models achieved high accuracy at physiological maturity, with a mean error of 1 t ha−1 (16%). Yield forecasts were mainly driven by absorbed radiation during the reproductive phase and a regional factor. Early-season forecasts incorporated ENSO and sowing period, but with reduced accuracy. When scaled to regional forecasts, the models performed even better, with a mean error of 0.3 t ha−1 (4%). These results combine a novel case of yield forecast because of the low data requirements from users, high anticipation (30–90 days before harvest), and good levels of accuracy at both field and regional scales. Additionally, the models’ interpretability makes them valuable diagnostic tools for post-season analysis. EEA Pergamino Fil: Menendez-Coccoz, Martin. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Rotili, Diego H. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Rotili, Diego H. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino; Argentina Fil: Otegui, María E. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Otegui, María E. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina Fil: Martini, Gustavo. Asociación Argentina de Consorcios Regionales de Experimentación Agrícola. Unidad de Investigación y Desarrollo, Área de Agricultura; Argentina Fil: Paolini, María. Asociación Argentina de Consorcios Regionales de Experimentación Agrícola. Unidad de Investigación y Desarrollo, Área de Agricultura; Argentina Fil: Di Bella, Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Piñeiro, Gervasio. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Oesterheld, Martín. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina 2025-06-26T11:38:11Z 2025-06-26T11:38:11Z 2025-05 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/22797 https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.70089 0002-1962 1435-0645 (online) https://doi.org/10.1002/agj2.70089 eng info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Wiley Agronomy Journal 117 (3) : e70089. (May/June 2025)
spellingShingle Maíz
Maize
Rendimiento de cultivos
Crop yield
Manejo del cultivo
Crop management
Radiación fotosintéticamente activa
Photosynthetically active radiation
El Niño
Índice de cosecha
Harvest index
Menendez-Coccoz, Martin
Rotili, Diego Hernán
Otegui, María Elena
Martini, Gustavo
Paolini, María
Di Bella, Carlos
Piñeiro, Gervasio
Oesterheld, Martín
Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title_full Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title_fullStr Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title_full_unstemmed Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title_short Low-input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
title_sort low input interpretable models to forecast maize yield at multiple scales based on absorbed radiation
topic Maíz
Maize
Rendimiento de cultivos
Crop yield
Manejo del cultivo
Crop management
Radiación fotosintéticamente activa
Photosynthetically active radiation
El Niño
Índice de cosecha
Harvest index
url http://hdl.handle.net/20.500.12123/22797
https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.70089
https://doi.org/10.1002/agj2.70089
work_keys_str_mv AT menendezcoccozmartin lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT rotilidiegohernan lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT oteguimariaelena lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT martinigustavo lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT paolinimaria lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT dibellacarlos lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT pineirogervasio lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation
AT oesterheldmartin lowinputinterpretablemodelstoforecastmaizeyieldatmultiplescalesbasedonabsorbedradiation