Gene Expression Modulation in Bovine Endometrial Cells Infected with Gammaherpesvirus Type 4 and Exposed to Lipopolysaccharide in the Presence of Platelet-Rich Plasma

Uterine diseases in cattle are frequently linked to bacterial infections, with pathogens commonly isolated from the uterine lumen. Bovine Gammaherpesvirus Type 4 (BoGHV-4) is notably prevalent in certain regions of Argentina and is associated with uterine diseases in postpartum cattle. This study ai...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopez, Sofia, Álvarez, Ignacio, Andreoli, V., Delgado, S., Pérez, S., Pereyra, Susana Beatriz, Romeo, Florencia, Grolli, S., Verna, Andrea Elizabeth
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: MDPI 2025
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/22647
https://www.mdpi.com/1999-4915/17/6/744
https://doi.org/10.3390/v17060744
Descripción
Sumario:Uterine diseases in cattle are frequently linked to bacterial infections, with pathogens commonly isolated from the uterine lumen. Bovine Gammaherpesvirus Type 4 (BoGHV-4) is notably prevalent in certain regions of Argentina and is associated with uterine diseases in postpartum cattle. This study aims to evaluate the impact of platelet-rich plasma (PRP) on the gene expression related to BoGHV-4 infection in the presence of lipopolysaccharide (LPS), exploring the potential of PRP as a therapeutic alternative. The interaction between LPS and Toll-like receptor 4 (TLR4) plays a crucial role in inflammatory responses, triggering cytokine production and immune activation. Our results show that PRP modulates TLR4 and TNF-α gene expression, indicating a potential inhibitory role in inflammatory processes. Furthermore, PRP alter the temporal dynamics of BoGHV-4 replication by modulating the expression of the viral immediate–early gene (IE-2) and delaying proinflammatory cytokine responses such as IL-8. Notably, PRP enhances IFN-γ expression, which could help prevent tissue damage caused by bacterial and viral coinfection. These findings highlight the potential of PRP as an anti-inflammatory agent with therapeutic benefits in treating uterine diseases, offering an alternative to traditional antibiotic treatments.