Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring

Wetlands, covering 7 % of Earth’s surface, are crucial for providing ecosystem services and regulating climate change. Despite their importance, global fluctuations in wetland distribution highlight the need for accurate and comprehensive mapping to address current and future challenges. In Argentin...

Full description

Bibliographic Details
Main Authors: Navarro, María Fabiana, Calamari, Noelia Cecilia, Navarro, Carlos Saúl, Enriquez, Andrea Soledad, Mosciaro, Maria Jesus, Saucedo, Griselda Isabel, Barrios, Raúl Ariel, Curcio, Matías Hernán, Dieta, Victorio, Garcia Martinez, Guillermo Carlos, Iturralde Elortegui, Maria Del Rosario Ma, Michard, Nicole Jacqueline, Paredes, Paula Natalia, Umaña, Fernando, Alday Poblete, Silvina Esther, Pezzola, Nestor Alejandro, Vidal, Claudia, Winschel, Cristina Ines, Albarracin Franco, Silvia, Behr, Santiago Javier, Cianfagna, Francisco A., Cremona, Maria Victoria, Alvarenga, Fernando Agustin, Perucca, Alba Ruth, Lopez, Astor Emilio, Miranda, Federico Waldemar, Kurtz, Ditmar Bernardo
Format: Artículo
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/22624
https://www.sciencedirect.com/science/article/pii/S2589471425000130
https://doi.org/10.1016/j.wsee.2025.04.001
_version_ 1855486978292711424
author Navarro, María Fabiana
Calamari, Noelia Cecilia
Navarro, Carlos Saúl
Enriquez, Andrea Soledad
Mosciaro, Maria Jesus
Saucedo, Griselda Isabel
Barrios, Raúl Ariel
Curcio, Matías Hernán
Dieta, Victorio
Garcia Martinez, Guillermo Carlos
Iturralde Elortegui, Maria Del Rosario Ma
Michard, Nicole Jacqueline
Paredes, Paula Natalia
Umaña, Fernando
Alday Poblete, Silvina Esther
Pezzola, Nestor Alejandro
Vidal, Claudia
Winschel, Cristina Ines
Albarracin Franco, Silvia
Behr, Santiago Javier
Cianfagna, Francisco A.
Cremona, Maria Victoria
Alvarenga, Fernando Agustin
Perucca, Alba Ruth
Lopez, Astor Emilio
Miranda, Federico Waldemar
Kurtz, Ditmar Bernardo
author_browse Albarracin Franco, Silvia
Alday Poblete, Silvina Esther
Alvarenga, Fernando Agustin
Barrios, Raúl Ariel
Behr, Santiago Javier
Calamari, Noelia Cecilia
Cianfagna, Francisco A.
Cremona, Maria Victoria
Curcio, Matías Hernán
Dieta, Victorio
Enriquez, Andrea Soledad
Garcia Martinez, Guillermo Carlos
Iturralde Elortegui, Maria Del Rosario Ma
Kurtz, Ditmar Bernardo
Lopez, Astor Emilio
Michard, Nicole Jacqueline
Miranda, Federico Waldemar
Mosciaro, Maria Jesus
Navarro, Carlos Saúl
Navarro, María Fabiana
Paredes, Paula Natalia
Perucca, Alba Ruth
Pezzola, Nestor Alejandro
Saucedo, Griselda Isabel
Umaña, Fernando
Vidal, Claudia
Winschel, Cristina Ines
author_facet Navarro, María Fabiana
Calamari, Noelia Cecilia
Navarro, Carlos Saúl
Enriquez, Andrea Soledad
Mosciaro, Maria Jesus
Saucedo, Griselda Isabel
Barrios, Raúl Ariel
Curcio, Matías Hernán
Dieta, Victorio
Garcia Martinez, Guillermo Carlos
Iturralde Elortegui, Maria Del Rosario Ma
Michard, Nicole Jacqueline
Paredes, Paula Natalia
Umaña, Fernando
Alday Poblete, Silvina Esther
Pezzola, Nestor Alejandro
Vidal, Claudia
Winschel, Cristina Ines
Albarracin Franco, Silvia
Behr, Santiago Javier
Cianfagna, Francisco A.
Cremona, Maria Victoria
Alvarenga, Fernando Agustin
Perucca, Alba Ruth
Lopez, Astor Emilio
Miranda, Federico Waldemar
Kurtz, Ditmar Bernardo
author_sort Navarro, María Fabiana
collection INTA Digital
description Wetlands, covering 7 % of Earth’s surface, are crucial for providing ecosystem services and regulating climate change. Despite their importance, global fluctuations in wetland distribution highlight the need for accurate and comprehensive mapping to address current and future challenges. In Argentina, a lack of detailed knowledge about wetland distribution, extent, and dynamics impedes effective conservation and management efforts. This study addresses these challenges by presenting a probabilistic wetland distribution map for Argentina, inte­ grating 20 years of satellite imagery with machine learning and cloud computing technologies. Our approach introduces a comprehensive set of biophysical indices, enabling the identification of key wetland characteristics: 1) permanent or temporal surface water presence; 2) water-adapted vegetation phenology; and 3) geo­ morphology conducive to water accumulation. Our model achieved an accuracy of 89.3 %, effectively identifying wetland areas and delineating “elasticity” zones that reveal temporal wetland behavior. Approximately 9.5 % of Argentina is classified as wetlands, with the Chaco-Mesopotamia region accounting for 43 % of these areas. The performance of the 42 assessed variables varied across macro-regions, highlighting the necessity for regionspecific classification methods. In the Andean region, variables such as the Digital Elevation Model (DEM) and Topographic Wetness Index (TWI) were key predictors, while in the plains, spectral properties including vegetation and water content indices were more significant. Despite challenges in classifying irrigated areas, the model demonstrated considerable robustness. This study not only enhances our understanding of wetland dy­ namics but also provides insights into how different regions respond to various environmental factors, offering a more nuanced perspective on wetland behavior. These findings pave the way for refined conservation strategies and further research into the impacts of climate change and land use on wetland ecosystems. The precision, scalability, and representation of wetland elasticity emphasize its importance for decision-making and provide a crucial baseline for future research amid ongoing environmental changes.
format Artículo
id INTA22624
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA226242025-06-11T11:19:05Z Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring Navarro, María Fabiana Calamari, Noelia Cecilia Navarro, Carlos Saúl Enriquez, Andrea Soledad Mosciaro, Maria Jesus Saucedo, Griselda Isabel Barrios, Raúl Ariel Curcio, Matías Hernán Dieta, Victorio Garcia Martinez, Guillermo Carlos Iturralde Elortegui, Maria Del Rosario Ma Michard, Nicole Jacqueline Paredes, Paula Natalia Umaña, Fernando Alday Poblete, Silvina Esther Pezzola, Nestor Alejandro Vidal, Claudia Winschel, Cristina Ines Albarracin Franco, Silvia Behr, Santiago Javier Cianfagna, Francisco A. Cremona, Maria Victoria Alvarenga, Fernando Agustin Perucca, Alba Ruth Lopez, Astor Emilio Miranda, Federico Waldemar Kurtz, Ditmar Bernardo Tierras Húmedas Ecosistema Sostenibilidad Teledetección Argentina Wetlands Ecosystems Sustainability Remote Sensing Humedales Wetlands, covering 7 % of Earth’s surface, are crucial for providing ecosystem services and regulating climate change. Despite their importance, global fluctuations in wetland distribution highlight the need for accurate and comprehensive mapping to address current and future challenges. In Argentina, a lack of detailed knowledge about wetland distribution, extent, and dynamics impedes effective conservation and management efforts. This study addresses these challenges by presenting a probabilistic wetland distribution map for Argentina, inte­ grating 20 years of satellite imagery with machine learning and cloud computing technologies. Our approach introduces a comprehensive set of biophysical indices, enabling the identification of key wetland characteristics: 1) permanent or temporal surface water presence; 2) water-adapted vegetation phenology; and 3) geo­ morphology conducive to water accumulation. Our model achieved an accuracy of 89.3 %, effectively identifying wetland areas and delineating “elasticity” zones that reveal temporal wetland behavior. Approximately 9.5 % of Argentina is classified as wetlands, with the Chaco-Mesopotamia region accounting for 43 % of these areas. The performance of the 42 assessed variables varied across macro-regions, highlighting the necessity for regionspecific classification methods. In the Andean region, variables such as the Digital Elevation Model (DEM) and Topographic Wetness Index (TWI) were key predictors, while in the plains, spectral properties including vegetation and water content indices were more significant. Despite challenges in classifying irrigated areas, the model demonstrated considerable robustness. This study not only enhances our understanding of wetland dy­ namics but also provides insights into how different regions respond to various environmental factors, offering a more nuanced perspective on wetland behavior. These findings pave the way for refined conservation strategies and further research into the impacts of climate change and land use on wetland ecosystems. The precision, scalability, and representation of wetland elasticity emphasize its importance for decision-making and provide a crucial baseline for future research amid ongoing environmental changes. Instituto de Suelos Fil: Navarro Rau, María Fabiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Calamari, Noelia Cecilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; Argentina Fil: Navarro, Carlos S. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; Argentina. Fil: Mosciaro, Maria Jesus. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; Argentina. Fil: Saucedo, Griselda Isabel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; Argentina Fil: Barrios, Raúl. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; Argentina Fil: Curcio, Matías Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agroforestal Esquel; Argentina Fil: Dieta, Victorio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Delta del Paraná. Agencia De Extensión Rural Delta Frontal; Argentina Fil: Garcia Martinez, Guillermo Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; Argentina Fil: Iturralde Elortegui, María del Rosario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Agencia de Extensión Rural Olavarría; Argentina. Fil: Michard, Nicole Jacqueline. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Paredes, Paula Natalia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Umaña, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Laboratorio de Teledetección; Argentina Fil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Vidal, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; Argentina. Fil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; Argentina Fil: Albarracin Franco, Silvia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Cerro Azul; Argentina Fil: Behr, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; Argentina Fil: Cianfagna, Francisco A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cremona, Maria Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo Suelos, Agua y Ambiente; Argentina Fil: Alvarenga, F.A. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Cerro Azul; Argentina Fil: Perucca, Ruth. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; Argentina Fil: Lopez, Astor Emilio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Sáenz Peña; Argentina Fil: Miranda, Federico Waldemar. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria El Colorado. Agencia de Extensión Rural Formosa; Argentina Fil: Kurtz, Ditmar Bernardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; Argentina. Fil: Enriquez, Andrea Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; Argentina Fil: Alday, Silvina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina. 2025-06-11T10:41:53Z 2025-06-11T10:41:53Z 2025-04-04 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/22624 https://www.sciencedirect.com/science/article/pii/S2589471425000130 2598-4714 https://doi.org/10.1016/j.wsee.2025.04.001 eng info:eu-repograntAgreement/INTA/2019-PD-E2-I506-002, Humedales de la República Argentina: distribución, usos y recomendaciones coparticipativas para una producción sustentable info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Watershed ecology and the Environment 7 : 144-158 (2025)
spellingShingle Tierras Húmedas
Ecosistema
Sostenibilidad
Teledetección
Argentina
Wetlands
Ecosystems
Sustainability
Remote Sensing
Humedales
Navarro, María Fabiana
Calamari, Noelia Cecilia
Navarro, Carlos Saúl
Enriquez, Andrea Soledad
Mosciaro, Maria Jesus
Saucedo, Griselda Isabel
Barrios, Raúl Ariel
Curcio, Matías Hernán
Dieta, Victorio
Garcia Martinez, Guillermo Carlos
Iturralde Elortegui, Maria Del Rosario Ma
Michard, Nicole Jacqueline
Paredes, Paula Natalia
Umaña, Fernando
Alday Poblete, Silvina Esther
Pezzola, Nestor Alejandro
Vidal, Claudia
Winschel, Cristina Ines
Albarracin Franco, Silvia
Behr, Santiago Javier
Cianfagna, Francisco A.
Cremona, Maria Victoria
Alvarenga, Fernando Agustin
Perucca, Alba Ruth
Lopez, Astor Emilio
Miranda, Federico Waldemar
Kurtz, Ditmar Bernardo
Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title_full Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title_fullStr Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title_full_unstemmed Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title_short Advancing wetland mapping in Argentina: a probalitistic approach integrating remote sensing, machine learning, and cloud computing towards sustainable ecosystem monitoring
title_sort advancing wetland mapping in argentina a probalitistic approach integrating remote sensing machine learning and cloud computing towards sustainable ecosystem monitoring
topic Tierras Húmedas
Ecosistema
Sostenibilidad
Teledetección
Argentina
Wetlands
Ecosystems
Sustainability
Remote Sensing
Humedales
url http://hdl.handle.net/20.500.12123/22624
https://www.sciencedirect.com/science/article/pii/S2589471425000130
https://doi.org/10.1016/j.wsee.2025.04.001
work_keys_str_mv AT navarromariafabiana advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT calamarinoeliacecilia advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT navarrocarlossaul advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT enriquezandreasoledad advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT mosciaromariajesus advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT saucedogriseldaisabel advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT barriosraulariel advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT curciomatiashernan advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT dietavictorio advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT garciamartinezguillermocarlos advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT iturraldeelorteguimariadelrosarioma advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT michardnicolejacqueline advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT paredespaulanatalia advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT umanafernando advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT aldaypobletesilvinaesther advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT pezzolanestoralejandro advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT vidalclaudia advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT winschelcristinaines advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT albarracinfrancosilvia advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT behrsantiagojavier advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT cianfagnafranciscoa advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT cremonamariavictoria advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT alvarengafernandoagustin advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT peruccaalbaruth advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT lopezastoremilio advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT mirandafedericowaldemar advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring
AT kurtzditmarbernardo advancingwetlandmappinginargentinaaprobalitisticapproachintegratingremotesensingmachinelearningandcloudcomputingtowardssustainableecosystemmonitoring