Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina

Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region,...

Full description

Bibliographic Details
Main Authors: Filip, Iván Daniel, Peri, Pablo Luis, Banegas, Natalia Romina, Nasca, Jose Andres, Sacido, Mónica, Faverin, Claudia, Vibart, Ronaldo
Format: Artículo
Language:Inglés
Published: MDPI 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/22478
https://www.mdpi.com/2071-1050/17/11/5012
https://doi.org/10.3390/su17115012
_version_ 1855486942663147520
author Filip, Iván Daniel
Peri, Pablo Luis
Banegas, Natalia Romina
Nasca, Jose Andres
Sacido, Mónica
Faverin, Claudia
Vibart, Ronaldo
author_browse Banegas, Natalia Romina
Faverin, Claudia
Filip, Iván Daniel
Nasca, Jose Andres
Peri, Pablo Luis
Sacido, Mónica
Vibart, Ronaldo
author_facet Filip, Iván Daniel
Peri, Pablo Luis
Banegas, Natalia Romina
Nasca, Jose Andres
Sacido, Mónica
Faverin, Claudia
Vibart, Ronaldo
author_sort Filip, Iván Daniel
collection INTA Digital
description Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover.
format Artículo
id INTA22478
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA224782025-06-04T10:43:32Z Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina Filip, Iván Daniel Peri, Pablo Luis Banegas, Natalia Romina Nasca, Jose Andres Sacido, Mónica Faverin, Claudia Vibart, Ronaldo Carbono Orgánico del Suelo Bosques Bosque Primario Praderas Estimación de las Existencias de Carbono Soil Organic Carbon Forests Primary Forests Grasslands Carbon Stock Assessments Bosque Nativo Región Chaqueña, Argentina Chaco Seco Soil organic carbon (SOC) stocks play an important role in ecosystem functioning and climate regulation. These stocks are declining in many tropical dry forests due to land-use change and degradation. Data on topsoil (0–300 mm) organic C stocks from six experiments conducted in the Dry Chaco region, the world’s largest dry tropical forest, were used to test the predictive performance of the Rothamsted Carbon Model (RothC) after its implementation in an object-oriented graphical programming language. RothC provided promising predictions (i.e., precise and accurate) of the SOC stocks under two representative land covers in the region, native forest and Rhodes grass [relative prediction error (RPE) < 10%, concordance correlation coefficient (CCC) > 0.9, modelling efficiency (MEF) > 0.7]. Comparatively, model predictions of the SOC stocks under degraded Rhodes grass swards were suboptimal. The predictions were sensitive to C inputs; under native forests and Rhodes grass, a high C input improved the predictive performance of the model by reducing the mean bias and increasing the MEF values, compared with mean and low C inputs. Larger datasets and revisiting some of the underlying assumptions in the SOC modelling will be required to improve the model’s performance, particularly under the degraded Rhodes grass land cover. EEA Las Breñas Fil: Filip, Iván Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Transferencia Formosa; Argentina Fil: Filip, Iván Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Las Breñas; Argentina Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina Fil: Banegas, Natalia Romina. Universidad Nacional de Tucumán. Facultad de Agronomía, Zootecnia y Veterinaria; Argentina Fil: Nasca, Jose Andres. Terratio; Argentina Fil: Sacido, Mónica. Investigadora independientes; Argentina Fil: Faverin, Claudia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Faverin, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Vibart, Ronaldo. AgResearch. Grasslands Research Centre; Nueva Zelanda 2025-06-04T10:39:33Z 2025-06-04T10:39:33Z 2025-06 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/22478 https://www.mdpi.com/2071-1050/17/11/5012 2071-1050 https://doi.org/10.3390/su17115012 eng info:eu-repograntAgreement/INTA/2019-PD-E3-I062-001, Estrategias de producción que incrementen el secuestro de C en suelo para la mitigación del Cambio Climático info:eu-repograntAgreement/INTA/2019-PE-E1-I006-001, Respuestas tecnológicas para el manejo sustentable y eficiente de pasturas megatérmicas en sistemas ganaderos del norte y centro de Argentina info:eu-repograntAgreement/INTA/2023-PD-L02-I097, Emisiones de gases de efecto invernadero y captura de carbono en sistemas agropecuarios y forestales info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Sustainability 17 (11) : 5012 (June 2025)
spellingShingle Carbono Orgánico del Suelo
Bosques
Bosque Primario
Praderas
Estimación de las Existencias de Carbono
Soil Organic Carbon
Forests
Primary Forests
Grasslands
Carbon Stock Assessments
Bosque Nativo
Región Chaqueña, Argentina
Chaco Seco
Filip, Iván Daniel
Peri, Pablo Luis
Banegas, Natalia Romina
Nasca, Jose Andres
Sacido, Mónica
Faverin, Claudia
Vibart, Ronaldo
Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title_full Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title_fullStr Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title_full_unstemmed Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title_short Predicting Soil Organic Carbon Stocks Under Native Forests and Grasslands in the Dry Chaco Region of Argentina
title_sort predicting soil organic carbon stocks under native forests and grasslands in the dry chaco region of argentina
topic Carbono Orgánico del Suelo
Bosques
Bosque Primario
Praderas
Estimación de las Existencias de Carbono
Soil Organic Carbon
Forests
Primary Forests
Grasslands
Carbon Stock Assessments
Bosque Nativo
Región Chaqueña, Argentina
Chaco Seco
url http://hdl.handle.net/20.500.12123/22478
https://www.mdpi.com/2071-1050/17/11/5012
https://doi.org/10.3390/su17115012
work_keys_str_mv AT filipivandaniel predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT peripabloluis predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT banegasnataliaromina predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT nascajoseandres predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT sacidomonica predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT faverinclaudia predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina
AT vibartronaldo predictingsoilorganiccarbonstocksundernativeforestsandgrasslandsinthedrychacoregionofargentina