Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation

The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (...

Full description

Bibliographic Details
Main Authors: Hoyos Jaramillo, Alejandro, Palomares, Roberto A., Bittar, João H.J., Hurley, David John, Rodríguez, Adriana, González Altamiranda, Erika, Kirks, S.J., Gutierrez, Alberto, Wall, S., Miller, K., Urdaneta, J., Skrada, Katie A., Lopez, D., Fenley, M.
Format: Artículo
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/22289
https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?
https://doi.org/10.1016/j.vetimm.2024.110871
_version_ 1855486906584793088
author Hoyos Jaramillo, Alejandro
Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
author_browse Bittar, João H.J.
Fenley, M.
González Altamiranda, Erika
Gutierrez, Alberto
Hoyos Jaramillo, Alejandro
Hurley, David John
Kirks, S.J.
Lopez, D.
Miller, K.
Palomares, Roberto A.
Rodríguez, Adriana
Skrada, Katie A.
Urdaneta, J.
Wall, S.
author_facet Hoyos Jaramillo, Alejandro
Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
author_sort Hoyos Jaramillo, Alejandro
collection INTA Digital
description The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease.
format Artículo
id INTA22289
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA222892025-05-15T11:14:12Z Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation Hoyos Jaramillo, Alejandro Palomares, Roberto A. Bittar, João H.J. Hurley, David John Rodríguez, Adriana González Altamiranda, Erika Kirks, S.J. Gutierrez, Alberto Wall, S. Miller, K. Urdaneta, J. Skrada, Katie A. Lopez, D. Fenley, M. Vacunación Ternero Pestivirus de la Diarrea Bovina Diarrea Viral Bovina Respuesta Inmunológica Vaccination Calves Bovine Diarrhoea Pestivirus Bovine Viral Diarrhoea Immune Response Dairy Cattle Ganado de Leche The objective of this study was to evaluate the effects of the vaccine administration route and the concurrent use of injectable trace minerals (ITM) with booster vaccination on the circulating leukocyte counts and T cell subpopulations in dairy calves challenged with Bovine viral diarrhea virus 2 (BVDV2) and Bovine herpes virus 1 (BHV1). A total of 60 Holstein male calves were used in this study. Forty-eight calves were administered a MLV intranasal (IN) vaccine containing BHV1, BRSV, BPI3V (Inforce 3®), and randomly assigned to subcutaneous (SC) administration of injectable trace minerals (ITM, n = 24) or saline (SAL, n = 24). Ten weeks later, the calves received booster vaccination using either SC or IN route and a second dose of ITM, or saline, according to previous groups [ITM-SC (n = 12), ITM-IN (n = 12), SAL-SC (n = 12), and SAL-IN (n = 12)]. Additionally, 12 calves did not receive vaccine or treatment (UNVAC, n = 12). Seven weeks after booster all calves were challenged with BVDV2 and seven days later with BHV1. Blood samples were collected on days −7, 0, 3, 6, 7, 10, 12 and 14 for determination of leukocyte counts and T cell subpopulations (CD4+, CD8+, WC1+ and CD25+). Unvaccinated calves had a significant leukopenia, compared to the vaccinated calves. There was a significant decrease of CD4+ CD8+ T cells over time after BVDV2 challenge, being more pronounced in the UNVAC calves. Calves receiving SC vaccination appeared to have greater CD4+ T cell number compared to the UNVAC calves. Calves treated with ITM had greater CD8+ T cells count than the other groups. Calves in the ITM-IN group had the greatest CD8+ T cell count on days 6 and 7 (P < 0.01). All vaccinated groups had steady response of CD4+CD25+ T cells and a slight increase of CD8+CD25+ T cells. In contrast, UNVAC calves had a significant increase of CD4+CD25+, CD8+CD25+ and WC1+CD25+ T cells on day 14. In conclusion, vaccine administration route and use of injectable trace minerals concurrent with vaccination affected the number CD4+ and CD8+ T cells in response to BVDV2 +BHV1 infection. Trace minerals supplementation concurrent with MLV vaccination might generate an improved cellular immunity against viral infections involved in respiratory disease. EEA Balcarce Fil: Hoyos Jaramillo, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Palomares, R. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Bittar, H.J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Florida. College of Veterinary Medicine. Department of Large Animal Clinical Sciences; Estados Unidos Fil: Hurley, D. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Rodríguez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: González Altamiranda, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina Fil: González Altamiranda, E. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina. Fil: Kirks, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. University of Georgia. College of Veterinary Medicine. Department of Population Health; Estados Unidos Fil: Gutierrez, A. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Wall, S. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Miller, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Urdaneta, J. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos Fil: Skrada, K. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Lopez, D. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. Fil: Fenley, M. University of Georgia. College of Veterinary Medicine. Group for Reproduction in Animals, Vaccinology & Infectious Diseases; Estados Unidos. 2025-05-15T10:55:44Z 2025-05-15T10:55:44Z 2025-02 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/22289 https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570? 1873-2534 (Online) 0165-2427 (Print) https://doi.org/10.1016/j.vetimm.2024.110871 eng info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Veterinary Immunology and Immunopathology 280 : 110871 (February 2025)
spellingShingle Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
Hoyos Jaramillo, Alejandro
Palomares, Roberto A.
Bittar, João H.J.
Hurley, David John
Rodríguez, Adriana
González Altamiranda, Erika
Kirks, S.J.
Gutierrez, Alberto
Wall, S.
Miller, K.
Urdaneta, J.
Skrada, Katie A.
Lopez, D.
Fenley, M.
Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_full Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_fullStr Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_full_unstemmed Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_short Circulating T cell subpopulations in dairy calves infected with Bovine viral diarrhea virus 2 and Bovine herpes virus 1 following modified-live virus booster vaccination: Effects of the administration route and trace mineral supplementation
title_sort circulating t cell subpopulations in dairy calves infected with bovine viral diarrhea virus 2 and bovine herpes virus 1 following modified live virus booster vaccination effects of the administration route and trace mineral supplementation
topic Vacunación
Ternero
Pestivirus de la Diarrea Bovina
Diarrea Viral Bovina
Respuesta Inmunológica
Vaccination
Calves
Bovine Diarrhoea Pestivirus
Bovine Viral Diarrhoea
Immune Response
Dairy Cattle
Ganado de Leche
url http://hdl.handle.net/20.500.12123/22289
https://www.sciencedirect.com/science/article/abs/pii/S0165242724001570?
https://doi.org/10.1016/j.vetimm.2024.110871
work_keys_str_mv AT hoyosjaramilloalejandro circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT palomaresrobertoa circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT bittarjoaohj circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT hurleydavidjohn circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT rodriguezadriana circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT gonzalezaltamirandaerika circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT kirkssj circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT gutierrezalberto circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT walls circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT millerk circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT urdanetaj circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT skradakatiea circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT lopezd circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation
AT fenleym circulatingtcellsubpopulationsindairycalvesinfectedwithbovineviraldiarrheavirus2andbovineherpesvirus1followingmodifiedlivevirusboostervaccinationeffectsoftheadministrationrouteandtracemineralsupplementation