Optimizing visual estimation of peanut late leaf spot severity with online training sessions and standard area diagrams
Quantification of plant disease severity is key for plant pathology research, particularly in the evaluation of disease management strategies. Visual estimation of severity remains widely used, especially in field experiments. Training sessions and the use of standard area diagram sets (SADs) are kn...
| Autores principales: | , , , , , |
|---|---|
| Formato: | info:ar-repo/semantics/artículo |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12123/21707 https://link.springer.com/article/10.1007/s10658-025-03016-1 https://doi.org/10.1007/s10658-025-03016-1 |
Ejemplares similares: Optimizing visual estimation of peanut late leaf spot severity with online training sessions and standard area diagrams
- Development and validation of a standard area diagram set for assessment of anthracnose severity on cucumber leaves
- LLS-SevEst – Late leaf spot severity estimator. A machine learning approach to assessing Nothopassalora personata in peanut
- Inhibición de la biomasa: un método para evaluar la sensibilidad a fungicidas en aislamientos de Nothopassalora personata
- Supplementary dataset to the article "Development and validation of a standard area diagram (SAD) set for assessing Alternaria black spot severity in pecan leaves" [Conjunto de datos]
- Draft genome sequence data of Nothopassalora personata, peanut foliar pathogen from Argentina
- Eficacia de fungicidas multisitio en el control de viruela del maní (Nothopassalora personata)