Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology

Global food insecurity and environmental degradation highlight the urgent need for more sustainable agricultural solutions. Plant synthetic biology emerges as a promising yet risky avenue to develop such solutions. While synthetic biology offers the potential for enhanced crop traits, it also entail...

Descripción completa

Detalles Bibliográficos
Autores principales: Lucido, Abel, Basallo, Oriol, Marin-Sanguino, Alberto, Eleiwa, Abderrahmane, Martinez, Emilce Soledad, Vilaprinyo, Ester, Sorribas, Albert, Alves, Rui
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: MDPI 2025
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/21607
https://www.mdpi.com/2223-7747/14/3/470
https://doi.org/10.3390/plants14030470
_version_ 1855038428189556736
author Lucido, Abel
Basallo, Oriol
Marin-Sanguino, Alberto
Eleiwa, Abderrahmane
Martinez, Emilce Soledad
Vilaprinyo, Ester
Sorribas, Albert
Alves, Rui
author_browse Alves, Rui
Basallo, Oriol
Eleiwa, Abderrahmane
Lucido, Abel
Marin-Sanguino, Alberto
Martinez, Emilce Soledad
Sorribas, Albert
Vilaprinyo, Ester
author_facet Lucido, Abel
Basallo, Oriol
Marin-Sanguino, Alberto
Eleiwa, Abderrahmane
Martinez, Emilce Soledad
Vilaprinyo, Ester
Sorribas, Albert
Alves, Rui
author_sort Lucido, Abel
collection INTA Digital
description Global food insecurity and environmental degradation highlight the urgent need for more sustainable agricultural solutions. Plant synthetic biology emerges as a promising yet risky avenue to develop such solutions. While synthetic biology offers the potential for enhanced crop traits, it also entails risks of extensive environmental damage. This review highlights the complexities and risks associated with plant synthetic biology, while presenting the potential of multiscale mathematical modeling to assess and mitigate those risks effectively. Despite its potential, applying multiscale mathematical models in plants remains underutilized. Here, we advocate for integrating technological advancements in agricultural data analysis to develop a comprehensive understanding of crops across biological scales. By reviewing common modeling approaches and methodologies applicable to plants, the paper establishes a foundation for creating and utilizing integrated multiscale mathematical models. Through modeling techniques such as parameter estimation, bifurcation analysis, and sensitivity analysis, researchers can identify mutational targets and anticipate pleiotropic effects, thereby enhancing the safety of genetically engineered species. To demonstrate the potential of this approach, ongoing efforts are highlighted to develop an integrated multiscale mathematical model for maize (Zea mays L.), engineered through synthetic biology to enhance resilience against Striga (Striga spp.) and drought.
format info:ar-repo/semantics/artículo
id INTA21607
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA216072025-03-10T11:31:36Z Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology Lucido, Abel Basallo, Oriol Marin-Sanguino, Alberto Eleiwa, Abderrahmane Martinez, Emilce Soledad Vilaprinyo, Ester Sorribas, Albert Alves, Rui Ciencia Vegetal Maíz Modelos Matemáticos Biología Sintética Plant Sciences Maize Mathematical Models Synthetic Biology Multiscale Global food insecurity and environmental degradation highlight the urgent need for more sustainable agricultural solutions. Plant synthetic biology emerges as a promising yet risky avenue to develop such solutions. While synthetic biology offers the potential for enhanced crop traits, it also entails risks of extensive environmental damage. This review highlights the complexities and risks associated with plant synthetic biology, while presenting the potential of multiscale mathematical modeling to assess and mitigate those risks effectively. Despite its potential, applying multiscale mathematical models in plants remains underutilized. Here, we advocate for integrating technological advancements in agricultural data analysis to develop a comprehensive understanding of crops across biological scales. By reviewing common modeling approaches and methodologies applicable to plants, the paper establishes a foundation for creating and utilizing integrated multiscale mathematical models. Through modeling techniques such as parameter estimation, bifurcation analysis, and sensitivity analysis, researchers can identify mutational targets and anticipate pleiotropic effects, thereby enhancing the safety of genetically engineered species. To demonstrate the potential of this approach, ongoing efforts are highlighted to develop an integrated multiscale mathematical model for maize (Zea mays L.), engineered through synthetic biology to enhance resilience against Striga (Striga spp.) and drought. EEA Pergamino Fil: Lucido, Abel. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Lucido, Abel. Instituto de Investigación Biomédica de Lérida; España Fil: Lucido, Abel. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Basallo, Oriol. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Basallo, Oriol. Instituto de Investigación Biomédica de Lérida; España Fil: Basallo, Oriol. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Marin-Sanguino, Alberto. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Marin-Sanguino, Alberto. Instituto de Investigación Biomédica de Lérida; España Fil: Marin-Sanguino, Alberto. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Eleiwa, Abderrahmane. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Eleiwa, Abderrahmane. Instituto de Investigación Biomédica de Lérida; España Fil: Eleiwa, Abderrahmane. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Martinez, Emilce. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino. Laboratorio de Semillas. Banco Activo de Germoplasma; Argentina Fil: Martinez, Emilce. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Martinez, Emilce. Instituto de Investigación Biomédica de Lérida; España Fil: Vilaprinyo, Ester. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Vilaprinyo, Ester. Instituto de Investigación Biomédica de Lérida; España Fil: Vilaprinyo, Ester. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Sorribas, Albert. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Sorribas, Albert. Instituto de Investigación Biomédica de Lérida; España Fil: Sorribas, Albert. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España Fil: Alves, Rui. Universidad de Lleida. Facultad de Medicina. Departamento de Ciencias Médicas Básicas. Grupo de Biología de Sistemas; España Fil: Alves, Rui. Instituto de Investigación Biomédica de Lérida; España Fil: Alves, Rui. MathSys2Bio. Grup de Recerca Consolidat de la Generalitat de Catalunya; España 2025-03-10T11:25:33Z 2025-03-10T11:25:33Z 2025-02 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/21607 https://www.mdpi.com/2223-7747/14/3/470 2223-7747 (online) https://doi.org/10.3390/plants14030470 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Plants 14 (3) : 470. (February 2025)
spellingShingle Ciencia Vegetal
Maíz
Modelos Matemáticos
Biología Sintética
Plant Sciences
Maize
Mathematical Models
Synthetic Biology
Multiscale
Lucido, Abel
Basallo, Oriol
Marin-Sanguino, Alberto
Eleiwa, Abderrahmane
Martinez, Emilce Soledad
Vilaprinyo, Ester
Sorribas, Albert
Alves, Rui
Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title_full Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title_fullStr Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title_full_unstemmed Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title_short Multiscale mathematical modeling in systems biology : a framework to boost plant synthetic biology
title_sort multiscale mathematical modeling in systems biology a framework to boost plant synthetic biology
topic Ciencia Vegetal
Maíz
Modelos Matemáticos
Biología Sintética
Plant Sciences
Maize
Mathematical Models
Synthetic Biology
Multiscale
url http://hdl.handle.net/20.500.12123/21607
https://www.mdpi.com/2223-7747/14/3/470
https://doi.org/10.3390/plants14030470
work_keys_str_mv AT lucidoabel multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT basallooriol multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT marinsanguinoalberto multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT eleiwaabderrahmane multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT martinezemilcesoledad multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT vilaprinyoester multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT sorribasalbert multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology
AT alvesrui multiscalemathematicalmodelinginsystemsbiologyaframeworktoboostplantsyntheticbiology