Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina

Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development...

Descripción completa

Detalles Bibliográficos
Autores principales: Alaggia, Francisco Guillermo, Innangi, Michele, Cavallero, Laura, Lopez, Dardo Ruben, Pontieri, Federica, Marzialetti, Flavio, Riera-Tatche, Ramon, Gamba, Paolo, Carranza, María Laura
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: MDPI 2025
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/21492
https://www.mdpi.com/2072-4292/17/5/748
https://doi.org/10.3390/rs17050748
_version_ 1855038409676947456
author Alaggia, Francisco Guillermo
Innangi, Michele
Cavallero, Laura
Lopez, Dardo Ruben
Pontieri, Federica
Marzialetti, Flavio
Riera-Tatche, Ramon
Gamba, Paolo
Carranza, María Laura
author_browse Alaggia, Francisco Guillermo
Carranza, María Laura
Cavallero, Laura
Gamba, Paolo
Innangi, Michele
Lopez, Dardo Ruben
Marzialetti, Flavio
Pontieri, Federica
Riera-Tatche, Ramon
author_facet Alaggia, Francisco Guillermo
Innangi, Michele
Cavallero, Laura
Lopez, Dardo Ruben
Pontieri, Federica
Marzialetti, Flavio
Riera-Tatche, Ramon
Gamba, Paolo
Carranza, María Laura
author_sort Alaggia, Francisco Guillermo
collection INTA Digital
description Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures.
format info:ar-repo/semantics/artículo
id INTA21492
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher MDPI
publisherStr MDPI
record_format dspace
spelling INTA214922025-02-27T13:01:09Z Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina Alaggia, Francisco Guillermo Innangi, Michele Cavallero, Laura Lopez, Dardo Ruben Pontieri, Federica Marzialetti, Flavio Riera-Tatche, Ramon Gamba, Paolo Carranza, María Laura Bosque Tropical Bosque Seco Clorofila Tropical Forests Dry Forests Chlorophylls Remote Sensing Teledetección Región Gran Chaco, Argentina Anthropogenic alteration of tropical and subtropical forests is a major driver of biodiversity loss; notably, the Chaco Forest, which is the largest dry forest in the Americas, is among the most impacted regions. Sustainable forest management, a key objective of the UN’s 15th Sustainable Development Goal (SDG), underscores the need for advanced monitoring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of alteration in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of theWest Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using linear mixed models. Spectral indices such as the BI (Brightness Index), NDWIGao (Normalized Difference Water Index), and MCARISent (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco Forest, which face extensive anthropogenic pressures. EEA Manfredi Fil: Alaggia, Francisco G. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Campo Anexo Villa Dolores; Argentina. Fil: Innangi. Michele. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina Fil: López, Dardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Villa Dolores; Argentina Fil: Pontieri, Federica. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Marzialetti, Flavio. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia Fil: Riera-Tatche, Ramon. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia Fil: Gamba, Paolo. University of Pavia. Department of Electrical, Biomedical and Computer Engineering; Italia Fil: Carranza, María Laura. University of Molise. Department of Biosciences and Territory. EnviXLab; Italia Fil: Carranza, María Laura. University of Sassari. National Biodiversity Future Center. Department of Agricultural Sciences; Italia 2025-02-27T12:47:50Z 2025-02-27T12:47:50Z 2025-02-21 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/21492 https://www.mdpi.com/2072-4292/17/5/748 2072-4292 https://doi.org/10.3390/rs17050748 eng info:eu-repograntAgreement/INTA/2023-PD-L02-I091, Adaptación a la variabilidad y al cambio global: herramientas para la gestión de riesgos, la reducción de impactos y el aumento de la resiliencia de socioecosistemas info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf MDPI Remote Sensing 17 (5) : 748 (February 2025)
spellingShingle Bosque Tropical
Bosque Seco
Clorofila
Tropical Forests
Dry Forests
Chlorophylls
Remote Sensing
Teledetección
Región Gran Chaco, Argentina
Alaggia, Francisco Guillermo
Innangi, Michele
Cavallero, Laura
Lopez, Dardo Ruben
Pontieri, Federica
Marzialetti, Flavio
Riera-Tatche, Ramon
Gamba, Paolo
Carranza, María Laura
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title_full Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title_fullStr Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title_full_unstemmed Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title_short Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
title_sort multi temporal remote sensing for forest conservation and management a case study of the gran chaco in central argentina
topic Bosque Tropical
Bosque Seco
Clorofila
Tropical Forests
Dry Forests
Chlorophylls
Remote Sensing
Teledetección
Región Gran Chaco, Argentina
url http://hdl.handle.net/20.500.12123/21492
https://www.mdpi.com/2072-4292/17/5/748
https://doi.org/10.3390/rs17050748
work_keys_str_mv AT alaggiafranciscoguillermo multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT innangimichele multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT cavallerolaura multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT lopezdardoruben multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT pontierifederica multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT marzialettiflavio multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT rieratatcheramon multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT gambapaolo multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina
AT carranzamarialaura multitemporalremotesensingforforestconservationandmanagementacasestudyofthegranchacoincentralargentina