Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables

The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdo...

Full description

Bibliographic Details
Main Authors: Alvarez, María Paula, Bellis, Laura Marisa, Arcamone, Julieta Rocio, Silvetti, Luna Emilce, Gavier Pizarro, Gregorio Ignacio
Format: Artículo
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/21379
https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382
https://doi.org/10.1016/j.rsase.2025.101485
_version_ 1855486744397348864
author Alvarez, María Paula
Bellis, Laura Marisa
Arcamone, Julieta Rocio
Silvetti, Luna Emilce
Gavier Pizarro, Gregorio Ignacio
author_browse Alvarez, María Paula
Arcamone, Julieta Rocio
Bellis, Laura Marisa
Gavier Pizarro, Gregorio Ignacio
Silvetti, Luna Emilce
author_facet Alvarez, María Paula
Bellis, Laura Marisa
Arcamone, Julieta Rocio
Silvetti, Luna Emilce
Gavier Pizarro, Gregorio Ignacio
author_sort Alvarez, María Paula
collection INTA Digital
description The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.
format Artículo
id INTA21379
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling INTA213792025-02-21T10:26:11Z Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables Alvarez, María Paula Bellis, Laura Marisa Arcamone, Julieta Rocio Silvetti, Luna Emilce Gavier Pizarro, Gregorio Ignacio Bosques Bosque Seco Ecología Índice Normalizado Diferencial de la Vegetación Teledetección Forests Dry Forests Ecology Normalized Difference Vegetation Index Remote Sensing NDVI The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (CC), diameter breast height (DBH_sum), number of woody individuals (NW) and two first axes of a principal component analysis (PC1 and PC2)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to CC (r2=0.58, rmse=14,5%), followed by DBHsum (r2=0.37, rmse=156.6) and NW (r2=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, CC estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors. Instituto de Fisiología y Recursos Genéticos Vegetales Fil: Alvarez, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alvarez, María Paula. Universidad Nacional de Córdoba; Argentina Fil: Alvarez, María Paula. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. Fil: Bellis, Laura Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bellis, Laura Marisa. Universidad Nacional de Córdoba; Argentina Fil: Bellis, Laura Marisa. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina. Fil: Arcamone, Julieta Rocio. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina Fil: Arcamone, Julieta Rocio. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina Fil: Silvetti, Luna Emilce. Consejo Nacional de Investigaciones Científicas y Tecnológicas; Argentina Fil: Silvetti, Luna Emilce. Instituto de Altos Estudios Espaciales “Mario Gulich”; Argentina Fil: Gavier Pizarro, Gregorio Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gavier Pizarro, Gregorio Ignacio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; Argentina 2025-02-21T10:23:05Z 2025-02-21T10:23:05Z 2025-01 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/21379 https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382 2352-9385 https://doi.org/10.1016/j.rsase.2025.101485 eng info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Elsevier Remote Sensing Applications: Society and Environment 37 : 101485. (January 2025)
spellingShingle Bosques
Bosque Seco
Ecología
Índice Normalizado Diferencial de la Vegetación
Teledetección
Forests
Dry Forests
Ecology
Normalized Difference Vegetation Index
Remote Sensing
NDVI
Alvarez, María Paula
Bellis, Laura Marisa
Arcamone, Julieta Rocio
Silvetti, Luna Emilce
Gavier Pizarro, Gregorio Ignacio
Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title_full Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title_fullStr Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title_full_unstemmed Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title_short Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables
title_sort ecological condition indicators for dry forest forest structure variables estimation with ndvi texture metrics and sar variables
topic Bosques
Bosque Seco
Ecología
Índice Normalizado Diferencial de la Vegetación
Teledetección
Forests
Dry Forests
Ecology
Normalized Difference Vegetation Index
Remote Sensing
NDVI
url http://hdl.handle.net/20.500.12123/21379
https://www.sciencedirect.com/science/article/abs/pii/S2352938525000382
https://doi.org/10.1016/j.rsase.2025.101485
work_keys_str_mv AT alvarezmariapaula ecologicalconditionindicatorsfordryforestforeststructurevariablesestimationwithndvitexturemetricsandsarvariables
AT bellislauramarisa ecologicalconditionindicatorsfordryforestforeststructurevariablesestimationwithndvitexturemetricsandsarvariables
AT arcamonejulietarocio ecologicalconditionindicatorsfordryforestforeststructurevariablesestimationwithndvitexturemetricsandsarvariables
AT silvettilunaemilce ecologicalconditionindicatorsfordryforestforeststructurevariablesestimationwithndvitexturemetricsandsarvariables
AT gavierpizarrogregorioignacio ecologicalconditionindicatorsfordryforestforeststructurevariablesestimationwithndvitexturemetricsandsarvariables