A pedometric technique to delimitate soil-specific zones at field scale

Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to develop pedometric techniques that allow an efficient combination of soil survey information and high-resolution terrain attribute data. The aim of this study was to present and eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Castro Franco, Mauricio, Córdoba, Mariano Augusto, Balzarini, Mónica Graciela, Costa, Jose Luis
Formato: Artículo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/2130
https://www.sciencedirect.com/science/article/pii/S0016706117302884
https://doi.org/10.1016/j.geoderma.2018.02.034
_version_ 1855483000256462848
author Castro Franco, Mauricio
Córdoba, Mariano Augusto
Balzarini, Mónica Graciela
Costa, Jose Luis
author_browse Balzarini, Mónica Graciela
Castro Franco, Mauricio
Costa, Jose Luis
Córdoba, Mariano Augusto
author_facet Castro Franco, Mauricio
Córdoba, Mariano Augusto
Balzarini, Mónica Graciela
Costa, Jose Luis
author_sort Castro Franco, Mauricio
collection INTA Digital
description Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to develop pedometric techniques that allow an efficient combination of soil survey information and high-resolution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal components algorithms (RF-KM-sPCA) and by using information from soil surveys and terrain attributes derived from a digital elevation model. The protocol involves three-steps: 1) automatic classification of small (20x20m) spatial units (SU) using the knowledge of the soil map units present in the farm landscape, 2) aggregation of SUM at farm scale and 3) validation of soil-specific zones. For the first step, we used the random forest algorithm with 10 terrain attributes. For the second step, KM-sPCA algorithms were used to cluster within field SU accounting for autocorrelation. For the third step, apparent soil electrical conductivity and yield maps was used to validate the delimitation of soil-specific zones. This technique produced more contiguous zones than other cluster methods which do not use spatiality. Six farm fields with highly differences in soils were partitioned by the proposed pedometric strategy. Apparent soil electrical conductivity and yield maps present significant differences among zones in all experimental fields. This analytic strategy, based in easy-to-obtain data, could be used to improve precision agricultural managements.
format Artículo
id INTA2130
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
record_format dspace
spelling INTA21302019-03-21T18:49:35Z A pedometric technique to delimitate soil-specific zones at field scale Castro Franco, Mauricio Córdoba, Mariano Augusto Balzarini, Mónica Graciela Costa, Jose Luis Suelo Agricultura de Precisión Manejo del Cultivo Reconocimiento de Suelos Soil Precision Agriculture Crop Management Soil Surveys Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to develop pedometric techniques that allow an efficient combination of soil survey information and high-resolution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal components algorithms (RF-KM-sPCA) and by using information from soil surveys and terrain attributes derived from a digital elevation model. The protocol involves three-steps: 1) automatic classification of small (20x20m) spatial units (SU) using the knowledge of the soil map units present in the farm landscape, 2) aggregation of SUM at farm scale and 3) validation of soil-specific zones. For the first step, we used the random forest algorithm with 10 terrain attributes. For the second step, KM-sPCA algorithms were used to cluster within field SU accounting for autocorrelation. For the third step, apparent soil electrical conductivity and yield maps was used to validate the delimitation of soil-specific zones. This technique produced more contiguous zones than other cluster methods which do not use spatiality. Six farm fields with highly differences in soils were partitioned by the proposed pedometric strategy. Apparent soil electrical conductivity and yield maps present significant differences among zones in all experimental fields. This analytic strategy, based in easy-to-obtain data, could be used to improve precision agricultural managements. CEI  Barrow Fil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Barrow; Argentina Fil: Córdoba, Mariano Augusto. Universidad Nacional de Cordoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Balzarini, Mónica Graciela. Universidad Nacional de Cordoba. Facultad de Ciencias Agropecuarias. Cátedra de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina 2018-03-27T12:28:27Z 2018-03-27T12:28:27Z 2018-07 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/2130 https://www.sciencedirect.com/science/article/pii/S0016706117302884 0016-7061 https://doi.org/10.1016/j.geoderma.2018.02.034 eng info:eu-repo/semantics/restrictedAccess application/pdf Geoderma 322 : 101-111. (July 2018)
spellingShingle Suelo
Agricultura de Precisión
Manejo del Cultivo
Reconocimiento de Suelos
Soil
Precision Agriculture
Crop Management
Soil Surveys
Castro Franco, Mauricio
Córdoba, Mariano Augusto
Balzarini, Mónica Graciela
Costa, Jose Luis
A pedometric technique to delimitate soil-specific zones at field scale
title A pedometric technique to delimitate soil-specific zones at field scale
title_full A pedometric technique to delimitate soil-specific zones at field scale
title_fullStr A pedometric technique to delimitate soil-specific zones at field scale
title_full_unstemmed A pedometric technique to delimitate soil-specific zones at field scale
title_short A pedometric technique to delimitate soil-specific zones at field scale
title_sort pedometric technique to delimitate soil specific zones at field scale
topic Suelo
Agricultura de Precisión
Manejo del Cultivo
Reconocimiento de Suelos
Soil
Precision Agriculture
Crop Management
Soil Surveys
url http://hdl.handle.net/20.500.12123/2130
https://www.sciencedirect.com/science/article/pii/S0016706117302884
https://doi.org/10.1016/j.geoderma.2018.02.034
work_keys_str_mv AT castrofrancomauricio apedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT cordobamarianoaugusto apedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT balzarinimonicagraciela apedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT costajoseluis apedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT castrofrancomauricio pedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT cordobamarianoaugusto pedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT balzarinimonicagraciela pedometrictechniquetodelimitatesoilspecificzonesatfieldscale
AT costajoseluis pedometrictechniquetodelimitatesoilspecificzonesatfieldscale