Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population

Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused...

Full description

Bibliographic Details
Main Authors: Duarte, Damían, Jurcic, Esteban Javier, Dutour, Joaquín, Villalba, Pamela Victoria, Centurion, Carmelo, Grattapaglia, Darío, Cappa, Eduardo Pablo
Format: Artículo
Language:Inglés
Published: Frontiers Media 2024
Subjects:
Online Access:http://hdl.handle.net/20.500.12123/20756
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full
https://doi.org/10.3389/fpls.2024.1462285
_version_ 1855486639446425600
author Duarte, Damían
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
author_browse Cappa, Eduardo Pablo
Centurion, Carmelo
Duarte, Damían
Dutour, Joaquín
Grattapaglia, Darío
Jurcic, Esteban Javier
Villalba, Pamela Victoria
author_facet Duarte, Damían
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
author_sort Duarte, Damían
collection INTA Digital
description Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
format Artículo
id INTA20756
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Frontiers Media
publisherStr Frontiers Media
record_format dspace
spelling INTA207562024-12-26T14:16:39Z Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population Duarte, Damían Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurion, Carmelo Grattapaglia, Darío Cappa, Eduardo Pablo Seedling Stage Marker-assisted Selection Forest Trees Estadío de Plántula Eucalyptus Eucalyptus grandis Selección Asistida por Marcadores Arboles Forestales Genomic Selection Effectiveness Genomic Selection Eficacia de la Selección Genómica Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance. Instituto de Recursos Biológicos Fil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; Brasil Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2024-12-26T14:01:49Z 2024-12-26T14:01:49Z 2024-10-03 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/20756 https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full 1664-462X https://doi.org/10.3389/fpls.2024.1462285 eng info:eu-repograntAgreement/INTA/2023-PE-L01-I067, Mejoramiento genético y silvicultura de plantaciones para la producción sostenible de productos forestales para distintos destinos industriales info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Frontiers Media Frontiers in Plant Science 15 : 1462285 (October 2024)
spellingShingle Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
Duarte, Damían
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_full Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_fullStr Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_full_unstemmed Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_short Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_sort genomic selection in forest trees comes to life unraveling its potential in an advanced four generation eucalyptus grandis population
topic Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
url http://hdl.handle.net/20.500.12123/20756
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full
https://doi.org/10.3389/fpls.2024.1462285
work_keys_str_mv AT duartedamian genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT jurcicestebanjavier genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT dutourjoaquin genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT villalbapamelavictoria genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT centurioncarmelo genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT grattapagliadario genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation
AT cappaeduardopablo genomicselectioninforesttreescomestolifeunravelingitspotentialinanadvancedfourgenerationeucalyptusgrandispopulation