Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)

A two dimensional finite element model that predicts temperature distribution and moisture content of soybean stored in silo bags due to seasonal variation of climatic conditions is described. The model includes grain respiration and calculates carbon dioxide and oxygen concentrations during storage...

Descripción completa

Detalles Bibliográficos
Autores principales: Arias Barreto, Alien, Abalone, Rita Mónica, Gastón, Analía Graciela Lucia, Ochandio, Dario Carlos, Cardoso, Marcelo Leandro, Bartosik, Ricardo Enrique
Formato: info:ar-repo/semantics/artículo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/2027
https://www.sciencedirect.com/science/article/pii/S1537511016303610
https://doi.org/10.1016/j.biosystemseng.2017.03.009
_version_ 1855034892538085376
author Arias Barreto, Alien
Abalone, Rita Mónica
Gastón, Analía Graciela Lucia
Ochandio, Dario Carlos
Cardoso, Marcelo Leandro
Bartosik, Ricardo Enrique
author_browse Abalone, Rita Mónica
Arias Barreto, Alien
Bartosik, Ricardo Enrique
Cardoso, Marcelo Leandro
Gastón, Analía Graciela Lucia
Ochandio, Dario Carlos
author_facet Arias Barreto, Alien
Abalone, Rita Mónica
Gastón, Analía Graciela Lucia
Ochandio, Dario Carlos
Cardoso, Marcelo Leandro
Bartosik, Ricardo Enrique
author_sort Arias Barreto, Alien
collection INTA Digital
description A two dimensional finite element model that predicts temperature distribution and moisture content of soybean stored in silo bags due to seasonal variation of climatic conditions is described. The model includes grain respiration and calculates carbon dioxide and oxygen concentrations during storage. The model validation was carried out by comparing predicted temperature, moisture content and gas concentration with measured data in field tests. Overall, the model underpredicted grain temperatures. Mean absolute difference was 0.5–1 °C for the bottom and middle layers and about 1.5 °C for the top layer. A slight moisture increase (0.4% w.b. at most) was predicted for the top grain layer while moisture for the middle and bottom layers remained almost unchanged during the storage period. A model of respiration rate of soybean as a function of temperature, moisture content and O2 level was used to predicted gas concentrations in the interstitial air. Average CO2 and O2 concentrations were compared with measured data. As mean grain temperature was below 15 °C for most of the storage period, O2 consumption and CO2 production were low. O2 level was about 19–20% V/V for dry soybean (13% w.b.) and about 16–17% V/V for wet soybean (15% w.b.). Predicted CO2 concentration varied from 1% V/V for dry soybean (13% w.b.) to 2% V/V points for wet soybean (15% w.b.). Though CO2 relative differences were high, the general trends of measured gas evolution were compatible with the simulated ones, indicating that the changes in CO2 and O2 concentrations during storage were satisfactorily predicted by use of the proposed correlations.
format info:ar-repo/semantics/artículo
id INTA2027
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2018
publishDateRange 2018
publishDateSort 2018
record_format dspace
spelling INTA20272024-10-08T14:53:56Z Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags) Arias Barreto, Alien Abalone, Rita Mónica Gastón, Analía Graciela Lucia Ochandio, Dario Carlos Cardoso, Marcelo Leandro Bartosik, Ricardo Enrique Soja Almacenamiento Soybeans Storage Gases Silo Bolsa A two dimensional finite element model that predicts temperature distribution and moisture content of soybean stored in silo bags due to seasonal variation of climatic conditions is described. The model includes grain respiration and calculates carbon dioxide and oxygen concentrations during storage. The model validation was carried out by comparing predicted temperature, moisture content and gas concentration with measured data in field tests. Overall, the model underpredicted grain temperatures. Mean absolute difference was 0.5–1 °C for the bottom and middle layers and about 1.5 °C for the top layer. A slight moisture increase (0.4% w.b. at most) was predicted for the top grain layer while moisture for the middle and bottom layers remained almost unchanged during the storage period. A model of respiration rate of soybean as a function of temperature, moisture content and O2 level was used to predicted gas concentrations in the interstitial air. Average CO2 and O2 concentrations were compared with measured data. As mean grain temperature was below 15 °C for most of the storage period, O2 consumption and CO2 production were low. O2 level was about 19–20% V/V for dry soybean (13% w.b.) and about 16–17% V/V for wet soybean (15% w.b.). Predicted CO2 concentration varied from 1% V/V for dry soybean (13% w.b.) to 2% V/V points for wet soybean (15% w.b.). Though CO2 relative differences were high, the general trends of measured gas evolution were compatible with the simulated ones, indicating that the changes in CO2 and O2 concentrations during storage were satisfactorily predicted by use of the proposed correlations. EEA Balcarce Fil: Arias Barreto, Alien. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario; Argentina Fil: Abalone, Rita Mónica. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Consejo de Investigaciones; Argentina Fil: Gastón, Analía Graciela Lucía. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Consejo de Investigaciones; Argentina Fil: Ochandio, Dario Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Cardoso, Marcelo Leandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina Fil: Bartosik, Ricardo Enrique. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina 2018-03-15T13:12:54Z 2018-03-15T13:12:54Z 2017-06 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/2027 https://www.sciencedirect.com/science/article/pii/S1537511016303610 1537-5110 https://doi.org/10.1016/j.biosystemseng.2017.03.009 eng info:eu-repo/semantics/restrictedAccess application/pdf Biosystems engineering 158 : 23-37. (June 2017)
spellingShingle Soja
Almacenamiento
Soybeans
Storage
Gases
Silo Bolsa
Arias Barreto, Alien
Abalone, Rita Mónica
Gastón, Analía Graciela Lucia
Ochandio, Dario Carlos
Cardoso, Marcelo Leandro
Bartosik, Ricardo Enrique
Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title_full Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title_fullStr Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title_full_unstemmed Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title_short Validation of a heat, moisture and gas concentration transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags)
title_sort validation of a heat moisture and gas concentration transfer model for soybean glycine max grains stored in plastic bags silo bags
topic Soja
Almacenamiento
Soybeans
Storage
Gases
Silo Bolsa
url http://hdl.handle.net/20.500.12123/2027
https://www.sciencedirect.com/science/article/pii/S1537511016303610
https://doi.org/10.1016/j.biosystemseng.2017.03.009
work_keys_str_mv AT ariasbarretoalien validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags
AT abaloneritamonica validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags
AT gastonanaliagracielalucia validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags
AT ochandiodariocarlos validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags
AT cardosomarceloleandro validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags
AT bartosikricardoenrique validationofaheatmoistureandgasconcentrationtransfermodelforsoybeanglycinemaxgrainsstoredinplasticbagssilobags