Assessing field experts yield maize estimations with satellite information derived from Sentinel-2

Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Earth observation data from space can contribute to agricultural monitoring, including crop yield assessment and forecasting. In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Carcedo, Diego, Pons, Diego Hernan, Alonso, Cesar, Fiant, Silvina, Scavuzzo, Carlos Marcelo, Marinelli, María Victoria
Formato: Conferencia
Lenguaje:Inglés
Publicado: Universidad Técnica Federico Santa María, Chile 2024
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12123/19389
_version_ 1855486300058025984
author Carcedo, Diego
Pons, Diego Hernan
Alonso, Cesar
Fiant, Silvina
Scavuzzo, Carlos Marcelo
Marinelli, María Victoria
author_browse Alonso, Cesar
Carcedo, Diego
Fiant, Silvina
Marinelli, María Victoria
Pons, Diego Hernan
Scavuzzo, Carlos Marcelo
author_facet Carcedo, Diego
Pons, Diego Hernan
Alonso, Cesar
Fiant, Silvina
Scavuzzo, Carlos Marcelo
Marinelli, María Victoria
author_sort Carcedo, Diego
collection INTA Digital
description Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Earth observation data from space can contribute to agricultural monitoring, including crop yield assessment and forecasting. In this study, we present a multiple regression site-specific crop yield model based on the Normalized Difference Vegetation Index (NDVI) extracted from Sentinel – 2 data at 10 meters resolution calibrated with yield corn estimations reported by local experts at a field level.
format Conferencia
id INTA19389
institution Instituto Nacional de Tecnología Agropecuaria (INTA -Argentina)
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Universidad Técnica Federico Santa María, Chile
publisherStr Universidad Técnica Federico Santa María, Chile
record_format dspace
spelling INTA193892024-09-13T13:27:00Z Assessing field experts yield maize estimations with satellite information derived from Sentinel-2 Carcedo, Diego Pons, Diego Hernan Alonso, Cesar Fiant, Silvina Scavuzzo, Carlos Marcelo Marinelli, María Victoria Maiz Zea Mays Rendimiento de Cultivos Economía Agrícola Maize Crop Yield Agricultural Economics Agricultural Sector Sector Agrario Sector Agrícola Sentinel-2 Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Earth observation data from space can contribute to agricultural monitoring, including crop yield assessment and forecasting. In this study, we present a multiple regression site-specific crop yield model based on the Normalized Difference Vegetation Index (NDVI) extracted from Sentinel – 2 data at 10 meters resolution calibrated with yield corn estimations reported by local experts at a field level. EEA Manfredi Fil: Carcedo, Diego. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); Argentina Fil: Pons, Diego Hernan. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina Fil: Pons, Diego Hernan. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); Argentina Fil: Alonso, Cesar. Bolsa de Cereales de Córdoba; Argentina Fil: Fiant, Silvina. Bolsa de Cereales de Córdoba; Argentina Fil: Scavuzzo, Carlos Marcelo. Universidad Nacional de Córdoba. Instituto de Estudios Espaciales Avanzados Mario Gulich (IG). Comisión Nacional de Actividades Espaciales (CONAE); Argentina Fil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; Argentina Fil: Marinelli, María Victoria. Comisión Nacional de Actividades Espaciales (CONAE). Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina 2024-09-13T13:19:21Z 2024-09-13T13:19:21Z 2019-09-25 info:ar-repo/semantics/documento de conferencia info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/19389 978-956-356-095-4 (Online) eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf Universidad Técnica Federico Santa María, Chile Proceedings of BigDSSAgro 2019. III International Conference on Agro BigData and Decision Support Systems in Agriculture. 25-27 September 2019, Valparaíso, Chile. p. 63-68
spellingShingle Maiz
Zea Mays
Rendimiento de Cultivos
Economía Agrícola
Maize
Crop Yield
Agricultural Economics
Agricultural Sector
Sector Agrario
Sector Agrícola
Sentinel-2
Carcedo, Diego
Pons, Diego Hernan
Alonso, Cesar
Fiant, Silvina
Scavuzzo, Carlos Marcelo
Marinelli, María Victoria
Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title_full Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title_fullStr Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title_full_unstemmed Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title_short Assessing field experts yield maize estimations with satellite information derived from Sentinel-2
title_sort assessing field experts yield maize estimations with satellite information derived from sentinel 2
topic Maiz
Zea Mays
Rendimiento de Cultivos
Economía Agrícola
Maize
Crop Yield
Agricultural Economics
Agricultural Sector
Sector Agrario
Sector Agrícola
Sentinel-2
url http://hdl.handle.net/20.500.12123/19389
work_keys_str_mv AT carcedodiego assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2
AT ponsdiegohernan assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2
AT alonsocesar assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2
AT fiantsilvina assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2
AT scavuzzocarlosmarcelo assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2
AT marinellimariavictoria assessingfieldexpertsyieldmaizeestimationswithsatelliteinformationderivedfromsentinel2